// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2006-2009 Benoit Jacob // Copyright (C) 2008 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_MATRIXBASE_H #define EIGEN_MATRIXBASE_H namespace Eigen { /** \class MatrixBase * \ingroup Core_Module * * \brief Base class for all dense matrices, vectors, and expressions * * This class is the base that is inherited by all matrix, vector, and related expression * types. Most of the Eigen API is contained in this class, and its base classes. Other important * classes for the Eigen API are Matrix, and VectorwiseOp. * * Note that some methods are defined in other modules such as the \ref LU_Module LU module * for all functions related to matrix inversions. * * \tparam Derived is the derived type, e.g. a matrix type, or an expression, etc. * * When writing a function taking Eigen objects as argument, if you want your function * to take as argument any matrix, vector, or expression, just let it take a * MatrixBase argument. As an example, here is a function printFirstRow which, given * a matrix, vector, or expression \a x, prints the first row of \a x. * * \code template void printFirstRow(const Eigen::MatrixBase& x) { cout << x.row(0) << endl; } * \endcode * * This class can be extended with the help of the plugin mechanism described on the page * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_MATRIXBASE_PLUGIN. * * \sa \blank \ref TopicClassHierarchy */ template class MatrixBase : public DenseBase { public: #ifndef EIGEN_PARSED_BY_DOXYGEN typedef MatrixBase StorageBaseType; typedef typename internal::traits::StorageKind StorageKind; typedef typename internal::traits::StorageIndex StorageIndex; typedef typename internal::traits::Scalar Scalar; typedef typename internal::packet_traits::type PacketScalar; typedef typename NumTraits::Real RealScalar; typedef DenseBase Base; using Base::RowsAtCompileTime; using Base::ColsAtCompileTime; using Base::SizeAtCompileTime; using Base::MaxRowsAtCompileTime; using Base::MaxColsAtCompileTime; using Base::MaxSizeAtCompileTime; using Base::IsVectorAtCompileTime; using Base::Flags; using Base::derived; using Base::const_cast_derived; using Base::rows; using Base::cols; using Base::size; using Base::coeff; using Base::coeffRef; using Base::lazyAssign; using Base::eval; using Base::operator+=; using Base::operator-=; using Base::operator*=; using Base::operator/=; typedef typename Base::CoeffReturnType CoeffReturnType; typedef typename Base::ConstTransposeReturnType ConstTransposeReturnType; typedef typename Base::RowXpr RowXpr; typedef typename Base::ColXpr ColXpr; #endif // not EIGEN_PARSED_BY_DOXYGEN #ifndef EIGEN_PARSED_BY_DOXYGEN /** type of the equivalent square matrix */ typedef Matrix SquareMatrixType; #endif // not EIGEN_PARSED_BY_DOXYGEN /** \returns the size of the main diagonal, which is min(rows(),cols()). * \sa rows(), cols(), SizeAtCompileTime. */ EIGEN_DEVICE_FUNC inline Index diagonalSize() const { return (numext::mini)(rows(),cols()); } typedef typename Base::PlainObject PlainObject; #ifndef EIGEN_PARSED_BY_DOXYGEN /** \internal Represents a matrix with all coefficients equal to one another*/ typedef CwiseNullaryOp,PlainObject> ConstantReturnType; /** \internal the return type of MatrixBase::adjoint() */ typedef typename internal::conditional::IsComplex, CwiseUnaryOp, ConstTransposeReturnType>, ConstTransposeReturnType >::type AdjointReturnType; /** \internal Return type of eigenvalues() */ typedef Matrix, internal::traits::ColsAtCompileTime, 1, ColMajor> EigenvaluesReturnType; /** \internal the return type of identity */ typedef CwiseNullaryOp,PlainObject> IdentityReturnType; /** \internal the return type of unit vectors */ typedef Block, SquareMatrixType>, internal::traits::RowsAtCompileTime, internal::traits::ColsAtCompileTime> BasisReturnType; #endif // not EIGEN_PARSED_BY_DOXYGEN #define EIGEN_CURRENT_STORAGE_BASE_CLASS Eigen::MatrixBase #define EIGEN_DOC_UNARY_ADDONS(X,Y) # include "../plugins/CommonCwiseUnaryOps.h" # include "../plugins/CommonCwiseBinaryOps.h" # include "../plugins/MatrixCwiseUnaryOps.h" # include "../plugins/MatrixCwiseBinaryOps.h" # ifdef EIGEN_MATRIXBASE_PLUGIN # include EIGEN_MATRIXBASE_PLUGIN # endif #undef EIGEN_CURRENT_STORAGE_BASE_CLASS #undef EIGEN_DOC_UNARY_ADDONS /** Special case of the template operator=, in order to prevent the compiler * from generating a default operator= (issue hit with g++ 4.1) */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const MatrixBase& other); // We cannot inherit here via Base::operator= since it is causing // trouble with MSVC. template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator=(const DenseBase& other); template EIGEN_DEVICE_FUNC Derived& operator=(const EigenBase& other); template EIGEN_DEVICE_FUNC Derived& operator=(const ReturnByValue& other); template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator+=(const MatrixBase& other); template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE Derived& operator-=(const MatrixBase& other); template EIGEN_DEVICE_FUNC const Product operator*(const MatrixBase &other) const; template EIGEN_DEVICE_FUNC const Product lazyProduct(const MatrixBase &other) const; template Derived& operator*=(const EigenBase& other); template void applyOnTheLeft(const EigenBase& other); template void applyOnTheRight(const EigenBase& other); template EIGEN_DEVICE_FUNC const Product operator*(const DiagonalBase &diagonal) const; template EIGEN_DEVICE_FUNC typename ScalarBinaryOpTraits::Scalar,typename internal::traits::Scalar>::ReturnType dot(const MatrixBase& other) const; EIGEN_DEVICE_FUNC RealScalar squaredNorm() const; EIGEN_DEVICE_FUNC RealScalar norm() const; RealScalar stableNorm() const; RealScalar blueNorm() const; RealScalar hypotNorm() const; EIGEN_DEVICE_FUNC const PlainObject normalized() const; EIGEN_DEVICE_FUNC const PlainObject stableNormalized() const; EIGEN_DEVICE_FUNC void normalize(); EIGEN_DEVICE_FUNC void stableNormalize(); EIGEN_DEVICE_FUNC const AdjointReturnType adjoint() const; EIGEN_DEVICE_FUNC void adjointInPlace(); typedef Diagonal DiagonalReturnType; EIGEN_DEVICE_FUNC DiagonalReturnType diagonal(); typedef typename internal::add_const >::type ConstDiagonalReturnType; EIGEN_DEVICE_FUNC ConstDiagonalReturnType diagonal() const; template struct DiagonalIndexReturnType { typedef Diagonal Type; }; template struct ConstDiagonalIndexReturnType { typedef const Diagonal Type; }; template EIGEN_DEVICE_FUNC typename DiagonalIndexReturnType::Type diagonal(); template EIGEN_DEVICE_FUNC typename ConstDiagonalIndexReturnType::Type diagonal() const; typedef Diagonal DiagonalDynamicIndexReturnType; typedef typename internal::add_const >::type ConstDiagonalDynamicIndexReturnType; EIGEN_DEVICE_FUNC DiagonalDynamicIndexReturnType diagonal(Index index); EIGEN_DEVICE_FUNC ConstDiagonalDynamicIndexReturnType diagonal(Index index) const; template struct TriangularViewReturnType { typedef TriangularView Type; }; template struct ConstTriangularViewReturnType { typedef const TriangularView Type; }; template EIGEN_DEVICE_FUNC typename TriangularViewReturnType::Type triangularView(); template EIGEN_DEVICE_FUNC typename ConstTriangularViewReturnType::Type triangularView() const; template struct SelfAdjointViewReturnType { typedef SelfAdjointView Type; }; template struct ConstSelfAdjointViewReturnType { typedef const SelfAdjointView Type; }; template EIGEN_DEVICE_FUNC typename SelfAdjointViewReturnType::Type selfadjointView(); template EIGEN_DEVICE_FUNC typename ConstSelfAdjointViewReturnType::Type selfadjointView() const; const SparseView sparseView(const Scalar& m_reference = Scalar(0), const typename NumTraits::Real& m_epsilon = NumTraits::dummy_precision()) const; EIGEN_DEVICE_FUNC static const IdentityReturnType Identity(); EIGEN_DEVICE_FUNC static const IdentityReturnType Identity(Index rows, Index cols); EIGEN_DEVICE_FUNC static const BasisReturnType Unit(Index size, Index i); EIGEN_DEVICE_FUNC static const BasisReturnType Unit(Index i); EIGEN_DEVICE_FUNC static const BasisReturnType UnitX(); EIGEN_DEVICE_FUNC static const BasisReturnType UnitY(); EIGEN_DEVICE_FUNC static const BasisReturnType UnitZ(); EIGEN_DEVICE_FUNC static const BasisReturnType UnitW(); EIGEN_DEVICE_FUNC const DiagonalWrapper asDiagonal() const; const PermutationWrapper asPermutation() const; EIGEN_DEVICE_FUNC Derived& setIdentity(); EIGEN_DEVICE_FUNC Derived& setIdentity(Index rows, Index cols); bool isIdentity(const RealScalar& prec = NumTraits::dummy_precision()) const; bool isDiagonal(const RealScalar& prec = NumTraits::dummy_precision()) const; bool isUpperTriangular(const RealScalar& prec = NumTraits::dummy_precision()) const; bool isLowerTriangular(const RealScalar& prec = NumTraits::dummy_precision()) const; template bool isOrthogonal(const MatrixBase& other, const RealScalar& prec = NumTraits::dummy_precision()) const; bool isUnitary(const RealScalar& prec = NumTraits::dummy_precision()) const; /** \returns true if each coefficients of \c *this and \a other are all exactly equal. * \warning When using floating point scalar values you probably should rather use a * fuzzy comparison such as isApprox() * \sa isApprox(), operator!= */ template EIGEN_DEVICE_FUNC inline bool operator==(const MatrixBase& other) const { return cwiseEqual(other).all(); } /** \returns true if at least one pair of coefficients of \c *this and \a other are not exactly equal to each other. * \warning When using floating point scalar values you probably should rather use a * fuzzy comparison such as isApprox() * \sa isApprox(), operator== */ template EIGEN_DEVICE_FUNC inline bool operator!=(const MatrixBase& other) const { return cwiseNotEqual(other).any(); } NoAlias noalias(); // TODO forceAlignedAccess is temporarily disabled // Need to find a nicer workaround. inline const Derived& forceAlignedAccess() const { return derived(); } inline Derived& forceAlignedAccess() { return derived(); } template inline const Derived& forceAlignedAccessIf() const { return derived(); } template inline Derived& forceAlignedAccessIf() { return derived(); } EIGEN_DEVICE_FUNC Scalar trace() const; template EIGEN_DEVICE_FUNC RealScalar lpNorm() const; EIGEN_DEVICE_FUNC MatrixBase& matrix() { return *this; } EIGEN_DEVICE_FUNC const MatrixBase& matrix() const { return *this; } /** \returns an \link Eigen::ArrayBase Array \endlink expression of this matrix * \sa ArrayBase::matrix() */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE ArrayWrapper array() { return ArrayWrapper(derived()); } /** \returns a const \link Eigen::ArrayBase Array \endlink expression of this matrix * \sa ArrayBase::matrix() */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const ArrayWrapper array() const { return ArrayWrapper(derived()); } /////////// LU module /////////// inline const FullPivLU fullPivLu() const; inline const PartialPivLU partialPivLu() const; inline const PartialPivLU lu() const; inline const Inverse inverse() const; template inline void computeInverseAndDetWithCheck( ResultType& inverse, typename ResultType::Scalar& determinant, bool& invertible, const RealScalar& absDeterminantThreshold = NumTraits::dummy_precision() ) const; template inline void computeInverseWithCheck( ResultType& inverse, bool& invertible, const RealScalar& absDeterminantThreshold = NumTraits::dummy_precision() ) const; Scalar determinant() const; /////////// Cholesky module /////////// inline const LLT llt() const; inline const LDLT ldlt() const; /////////// QR module /////////// inline const HouseholderQR householderQr() const; inline const ColPivHouseholderQR colPivHouseholderQr() const; inline const FullPivHouseholderQR fullPivHouseholderQr() const; inline const CompleteOrthogonalDecomposition completeOrthogonalDecomposition() const; /////////// Eigenvalues module /////////// inline EigenvaluesReturnType eigenvalues() const; inline RealScalar operatorNorm() const; /////////// SVD module /////////// inline JacobiSVD jacobiSvd(unsigned int computationOptions = 0) const; inline BDCSVD bdcSvd(unsigned int computationOptions = 0) const; /////////// Geometry module /////////// #ifndef EIGEN_PARSED_BY_DOXYGEN /// \internal helper struct to form the return type of the cross product template struct cross_product_return_type { typedef typename ScalarBinaryOpTraits::Scalar,typename internal::traits::Scalar>::ReturnType Scalar; typedef Matrix type; }; #endif // EIGEN_PARSED_BY_DOXYGEN template EIGEN_DEVICE_FUNC #ifndef EIGEN_PARSED_BY_DOXYGEN inline typename cross_product_return_type::type #else inline PlainObject #endif cross(const MatrixBase& other) const; template EIGEN_DEVICE_FUNC inline PlainObject cross3(const MatrixBase& other) const; EIGEN_DEVICE_FUNC inline PlainObject unitOrthogonal(void) const; EIGEN_DEVICE_FUNC inline Matrix eulerAngles(Index a0, Index a1, Index a2) const; // put this as separate enum value to work around possible GCC 4.3 bug (?) enum { HomogeneousReturnTypeDirection = ColsAtCompileTime==1&&RowsAtCompileTime==1 ? ((internal::traits::Flags&RowMajorBit)==RowMajorBit ? Horizontal : Vertical) : ColsAtCompileTime==1 ? Vertical : Horizontal }; typedef Homogeneous HomogeneousReturnType; EIGEN_DEVICE_FUNC inline HomogeneousReturnType homogeneous() const; enum { SizeMinusOne = SizeAtCompileTime==Dynamic ? Dynamic : SizeAtCompileTime-1 }; typedef Block::ColsAtCompileTime==1 ? SizeMinusOne : 1, internal::traits::ColsAtCompileTime==1 ? 1 : SizeMinusOne> ConstStartMinusOne; typedef EIGEN_EXPR_BINARYOP_SCALAR_RETURN_TYPE(ConstStartMinusOne,Scalar,quotient) HNormalizedReturnType; EIGEN_DEVICE_FUNC inline const HNormalizedReturnType hnormalized() const; ////////// Householder module /////////// void makeHouseholderInPlace(Scalar& tau, RealScalar& beta); template void makeHouseholder(EssentialPart& essential, Scalar& tau, RealScalar& beta) const; template void applyHouseholderOnTheLeft(const EssentialPart& essential, const Scalar& tau, Scalar* workspace); template void applyHouseholderOnTheRight(const EssentialPart& essential, const Scalar& tau, Scalar* workspace); ///////// Jacobi module ///////// template void applyOnTheLeft(Index p, Index q, const JacobiRotation& j); template void applyOnTheRight(Index p, Index q, const JacobiRotation& j); ///////// SparseCore module ///////// template EIGEN_STRONG_INLINE const typename SparseMatrixBase::template CwiseProductDenseReturnType::Type cwiseProduct(const SparseMatrixBase &other) const { return other.cwiseProduct(derived()); } ///////// MatrixFunctions module ///////// typedef typename internal::stem_function::type StemFunction; #define EIGEN_MATRIX_FUNCTION(ReturnType, Name, Description) \ /** \returns an expression of the matrix Description of \c *this. \brief This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise Description use ArrayBase::##Name . */ \ const ReturnType Name() const; #define EIGEN_MATRIX_FUNCTION_1(ReturnType, Name, Description, Argument) \ /** \returns an expression of the matrix Description of \c *this. \brief This function requires the unsupported MatrixFunctions module. To compute the coefficient-wise Description use ArrayBase::##Name . */ \ const ReturnType Name(Argument) const; EIGEN_MATRIX_FUNCTION(MatrixExponentialReturnValue, exp, exponential) /** \brief Helper function for the unsupported MatrixFunctions module.*/ const MatrixFunctionReturnValue matrixFunction(StemFunction f) const; EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, cosh, hyperbolic cosine) EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, sinh, hyperbolic sine) EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, cos, cosine) EIGEN_MATRIX_FUNCTION(MatrixFunctionReturnValue, sin, sine) EIGEN_MATRIX_FUNCTION(MatrixSquareRootReturnValue, sqrt, square root) EIGEN_MATRIX_FUNCTION(MatrixLogarithmReturnValue, log, logarithm) EIGEN_MATRIX_FUNCTION_1(MatrixPowerReturnValue, pow, power to \c p, const RealScalar& p) EIGEN_MATRIX_FUNCTION_1(MatrixComplexPowerReturnValue, pow, power to \c p, const std::complex& p) protected: EIGEN_DEFAULT_COPY_CONSTRUCTOR(MatrixBase) EIGEN_DEFAULT_EMPTY_CONSTRUCTOR_AND_DESTRUCTOR(MatrixBase) private: EIGEN_DEVICE_FUNC explicit MatrixBase(int); EIGEN_DEVICE_FUNC MatrixBase(int,int); template EIGEN_DEVICE_FUNC explicit MatrixBase(const MatrixBase&); protected: // mixing arrays and matrices is not legal template Derived& operator+=(const ArrayBase& ) {EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;} // mixing arrays and matrices is not legal template Derived& operator-=(const ArrayBase& ) {EIGEN_STATIC_ASSERT(std::ptrdiff_t(sizeof(typename OtherDerived::Scalar))==-1,YOU_CANNOT_MIX_ARRAYS_AND_MATRICES); return *this;} }; /*************************************************************************** * Implementation of matrix base methods ***************************************************************************/ /** replaces \c *this by \c *this * \a other. * * \returns a reference to \c *this * * Example: \include MatrixBase_applyOnTheRight.cpp * Output: \verbinclude MatrixBase_applyOnTheRight.out */ template template inline Derived& MatrixBase::operator*=(const EigenBase &other) { other.derived().applyThisOnTheRight(derived()); return derived(); } /** replaces \c *this by \c *this * \a other. It is equivalent to MatrixBase::operator*=(). * * Example: \include MatrixBase_applyOnTheRight.cpp * Output: \verbinclude MatrixBase_applyOnTheRight.out */ template template inline void MatrixBase::applyOnTheRight(const EigenBase &other) { other.derived().applyThisOnTheRight(derived()); } /** replaces \c *this by \a other * \c *this. * * Example: \include MatrixBase_applyOnTheLeft.cpp * Output: \verbinclude MatrixBase_applyOnTheLeft.out */ template template inline void MatrixBase::applyOnTheLeft(const EigenBase &other) { other.derived().applyThisOnTheLeft(derived()); } } // end namespace Eigen #endif // EIGEN_MATRIXBASE_H