// This file is part of Eigen, a lightweight C++ template library // for linear algebra. // // Copyright (C) 2008-2014 Gael Guennebaud // // This Source Code Form is subject to the terms of the Mozilla // Public License v. 2.0. If a copy of the MPL was not distributed // with this file, You can obtain one at http://mozilla.org/MPL/2.0/. #ifndef EIGEN_SPARSEMATRIX_H #define EIGEN_SPARSEMATRIX_H namespace Eigen { /** \ingroup SparseCore_Module * * \class SparseMatrix * * \brief A versatible sparse matrix representation * * This class implements a more versatile variants of the common \em compressed row/column storage format. * Each colmun's (resp. row) non zeros are stored as a pair of value with associated row (resp. colmiun) index. * All the non zeros are stored in a single large buffer. Unlike the \em compressed format, there might be extra * space inbetween the nonzeros of two successive colmuns (resp. rows) such that insertion of new non-zero * can be done with limited memory reallocation and copies. * * A call to the function makeCompressed() turns the matrix into the standard \em compressed format * compatible with many library. * * More details on this storage sceheme are given in the \ref TutorialSparse "manual pages". * * \tparam _Scalar the scalar type, i.e. the type of the coefficients * \tparam _Options Union of bit flags controlling the storage scheme. Currently the only possibility * is ColMajor or RowMajor. The default is 0 which means column-major. * \tparam _StorageIndex the type of the indices. It has to be a \b signed type (e.g., short, int, std::ptrdiff_t). Default is \c int. * * \warning In %Eigen 3.2, the undocumented type \c SparseMatrix::Index was improperly defined as the storage index type (e.g., int), * whereas it is now (starting from %Eigen 3.3) deprecated and always defined as Eigen::Index. * Codes making use of \c SparseMatrix::Index, might thus likely have to be changed to use \c SparseMatrix::StorageIndex instead. * * This class can be extended with the help of the plugin mechanism described on the page * \ref TopicCustomizing_Plugins by defining the preprocessor symbol \c EIGEN_SPARSEMATRIX_PLUGIN. */ namespace internal { template struct traits > { typedef _Scalar Scalar; typedef _StorageIndex StorageIndex; typedef Sparse StorageKind; typedef MatrixXpr XprKind; enum { RowsAtCompileTime = Dynamic, ColsAtCompileTime = Dynamic, MaxRowsAtCompileTime = Dynamic, MaxColsAtCompileTime = Dynamic, Flags = _Options | NestByRefBit | LvalueBit | CompressedAccessBit, SupportedAccessPatterns = InnerRandomAccessPattern }; }; template struct traits, DiagIndex> > { typedef SparseMatrix<_Scalar, _Options, _StorageIndex> MatrixType; typedef typename ref_selector::type MatrixTypeNested; typedef typename remove_reference::type _MatrixTypeNested; typedef _Scalar Scalar; typedef Dense StorageKind; typedef _StorageIndex StorageIndex; typedef MatrixXpr XprKind; enum { RowsAtCompileTime = Dynamic, ColsAtCompileTime = 1, MaxRowsAtCompileTime = Dynamic, MaxColsAtCompileTime = 1, Flags = LvalueBit }; }; template struct traits, DiagIndex> > : public traits, DiagIndex> > { enum { Flags = 0 }; }; } // end namespace internal template class SparseMatrix : public SparseCompressedBase > { typedef SparseCompressedBase Base; using Base::convert_index; friend class SparseVector<_Scalar,0,_StorageIndex>; public: using Base::isCompressed; using Base::nonZeros; EIGEN_SPARSE_PUBLIC_INTERFACE(SparseMatrix) using Base::operator+=; using Base::operator-=; typedef MappedSparseMatrix Map; typedef Diagonal DiagonalReturnType; typedef Diagonal ConstDiagonalReturnType; typedef typename Base::InnerIterator InnerIterator; typedef typename Base::ReverseInnerIterator ReverseInnerIterator; using Base::IsRowMajor; typedef internal::CompressedStorage Storage; enum { Options = _Options }; typedef typename Base::IndexVector IndexVector; typedef typename Base::ScalarVector ScalarVector; protected: typedef SparseMatrix TransposedSparseMatrix; Index m_outerSize; Index m_innerSize; StorageIndex* m_outerIndex; StorageIndex* m_innerNonZeros; // optional, if null then the data is compressed Storage m_data; public: /** \returns the number of rows of the matrix */ inline Index rows() const { return IsRowMajor ? m_outerSize : m_innerSize; } /** \returns the number of columns of the matrix */ inline Index cols() const { return IsRowMajor ? m_innerSize : m_outerSize; } /** \returns the number of rows (resp. columns) of the matrix if the storage order column major (resp. row major) */ inline Index innerSize() const { return m_innerSize; } /** \returns the number of columns (resp. rows) of the matrix if the storage order column major (resp. row major) */ inline Index outerSize() const { return m_outerSize; } /** \returns a const pointer to the array of values. * This function is aimed at interoperability with other libraries. * \sa innerIndexPtr(), outerIndexPtr() */ inline const Scalar* valuePtr() const { return m_data.valuePtr(); } /** \returns a non-const pointer to the array of values. * This function is aimed at interoperability with other libraries. * \sa innerIndexPtr(), outerIndexPtr() */ inline Scalar* valuePtr() { return m_data.valuePtr(); } /** \returns a const pointer to the array of inner indices. * This function is aimed at interoperability with other libraries. * \sa valuePtr(), outerIndexPtr() */ inline const StorageIndex* innerIndexPtr() const { return m_data.indexPtr(); } /** \returns a non-const pointer to the array of inner indices. * This function is aimed at interoperability with other libraries. * \sa valuePtr(), outerIndexPtr() */ inline StorageIndex* innerIndexPtr() { return m_data.indexPtr(); } /** \returns a const pointer to the array of the starting positions of the inner vectors. * This function is aimed at interoperability with other libraries. * \sa valuePtr(), innerIndexPtr() */ inline const StorageIndex* outerIndexPtr() const { return m_outerIndex; } /** \returns a non-const pointer to the array of the starting positions of the inner vectors. * This function is aimed at interoperability with other libraries. * \sa valuePtr(), innerIndexPtr() */ inline StorageIndex* outerIndexPtr() { return m_outerIndex; } /** \returns a const pointer to the array of the number of non zeros of the inner vectors. * This function is aimed at interoperability with other libraries. * \warning it returns the null pointer 0 in compressed mode */ inline const StorageIndex* innerNonZeroPtr() const { return m_innerNonZeros; } /** \returns a non-const pointer to the array of the number of non zeros of the inner vectors. * This function is aimed at interoperability with other libraries. * \warning it returns the null pointer 0 in compressed mode */ inline StorageIndex* innerNonZeroPtr() { return m_innerNonZeros; } /** \internal */ inline Storage& data() { return m_data; } /** \internal */ inline const Storage& data() const { return m_data; } /** \returns the value of the matrix at position \a i, \a j * This function returns Scalar(0) if the element is an explicit \em zero */ inline Scalar coeff(Index row, Index col) const { eigen_assert(row>=0 && row=0 && col=0 && row=0 && col=start && "you probably called coeffRef on a non finalized matrix"); if(end<=start) return insert(row,col); const Index p = m_data.searchLowerIndex(start,end-1,StorageIndex(inner)); if((pinnerSize() non zeros if reserve(Index) has not been called earlier. * In this case, the insertion procedure is optimized for a \e sequential insertion mode where elements are assumed to be * inserted by increasing outer-indices. * * If that's not the case, then it is strongly recommended to either use a triplet-list to assemble the matrix, or to first * call reserve(const SizesType &) to reserve the appropriate number of non-zero elements per inner vector. * * Assuming memory has been appropriately reserved, this function performs a sorted insertion in O(1) * if the elements of each inner vector are inserted in increasing inner index order, and in O(nnz_j) for a random insertion. * */ Scalar& insert(Index row, Index col); public: /** Removes all non zeros but keep allocated memory * * This function does not free the currently allocated memory. To release as much as memory as possible, * call \code mat.data().squeeze(); \endcode after resizing it. * * \sa resize(Index,Index), data() */ inline void setZero() { m_data.clear(); memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex)); if(m_innerNonZeros) memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex)); } /** Preallocates \a reserveSize non zeros. * * Precondition: the matrix must be in compressed mode. */ inline void reserve(Index reserveSize) { eigen_assert(isCompressed() && "This function does not make sense in non compressed mode."); m_data.reserve(reserveSize); } #ifdef EIGEN_PARSED_BY_DOXYGEN /** Preallocates \a reserveSize[\c j] non zeros for each column (resp. row) \c j. * * This function turns the matrix in non-compressed mode. * * The type \c SizesType must expose the following interface: \code typedef value_type; const value_type& operator[](i) const; \endcode * for \c i in the [0,this->outerSize()[ range. * Typical choices include std::vector, Eigen::VectorXi, Eigen::VectorXi::Constant, etc. */ template inline void reserve(const SizesType& reserveSizes); #else template inline void reserve(const SizesType& reserveSizes, const typename SizesType::value_type& enableif = #if (!EIGEN_COMP_MSVC) || (EIGEN_COMP_MSVC>=1500) // MSVC 2005 fails to compile with this typename typename #endif SizesType::value_type()) { EIGEN_UNUSED_VARIABLE(enableif); reserveInnerVectors(reserveSizes); } #endif // EIGEN_PARSED_BY_DOXYGEN protected: template inline void reserveInnerVectors(const SizesType& reserveSizes) { if(isCompressed()) { Index totalReserveSize = 0; // turn the matrix into non-compressed mode m_innerNonZeros = static_cast(std::malloc(m_outerSize * sizeof(StorageIndex))); if (!m_innerNonZeros) internal::throw_std_bad_alloc(); // temporarily use m_innerSizes to hold the new starting points. StorageIndex* newOuterIndex = m_innerNonZeros; StorageIndex count = 0; for(Index j=0; j=0; --j) { StorageIndex innerNNZ = previousOuterIndex - m_outerIndex[j]; for(Index i=innerNNZ-1; i>=0; --i) { m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i); m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i); } previousOuterIndex = m_outerIndex[j]; m_outerIndex[j] = newOuterIndex[j]; m_innerNonZeros[j] = innerNNZ; } if(m_outerSize>0) m_outerIndex[m_outerSize] = m_outerIndex[m_outerSize-1] + m_innerNonZeros[m_outerSize-1] + reserveSizes[m_outerSize-1]; m_data.resize(m_outerIndex[m_outerSize]); } else { StorageIndex* newOuterIndex = static_cast(std::malloc((m_outerSize+1)*sizeof(StorageIndex))); if (!newOuterIndex) internal::throw_std_bad_alloc(); StorageIndex count = 0; for(Index j=0; j(reserveSizes[j], alreadyReserved); count += toReserve + m_innerNonZeros[j]; } newOuterIndex[m_outerSize] = count; m_data.resize(count); for(Index j=m_outerSize-1; j>=0; --j) { Index offset = newOuterIndex[j] - m_outerIndex[j]; if(offset>0) { StorageIndex innerNNZ = m_innerNonZeros[j]; for(Index i=innerNNZ-1; i>=0; --i) { m_data.index(newOuterIndex[j]+i) = m_data.index(m_outerIndex[j]+i); m_data.value(newOuterIndex[j]+i) = m_data.value(m_outerIndex[j]+i); } } } std::swap(m_outerIndex, newOuterIndex); std::free(newOuterIndex); } } public: //--- low level purely coherent filling --- /** \internal * \returns a reference to the non zero coefficient at position \a row, \a col assuming that: * - the nonzero does not already exist * - the new coefficient is the last one according to the storage order * * Before filling a given inner vector you must call the statVec(Index) function. * * After an insertion session, you should call the finalize() function. * * \sa insert, insertBackByOuterInner, startVec */ inline Scalar& insertBack(Index row, Index col) { return insertBackByOuterInner(IsRowMajor?row:col, IsRowMajor?col:row); } /** \internal * \sa insertBack, startVec */ inline Scalar& insertBackByOuterInner(Index outer, Index inner) { eigen_assert(Index(m_outerIndex[outer+1]) == m_data.size() && "Invalid ordered insertion (invalid outer index)"); eigen_assert( (m_outerIndex[outer+1]-m_outerIndex[outer]==0 || m_data.index(m_data.size()-1)(m_data.size()); Index i = m_outerSize; // find the last filled column while (i>=0 && m_outerIndex[i]==0) --i; ++i; while (i<=m_outerSize) { m_outerIndex[i] = size; ++i; } } } //--- template void setFromTriplets(const InputIterators& begin, const InputIterators& end); template void setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func); void sumupDuplicates() { collapseDuplicates(internal::scalar_sum_op()); } template void collapseDuplicates(DupFunctor dup_func = DupFunctor()); //--- /** \internal * same as insert(Index,Index) except that the indices are given relative to the storage order */ Scalar& insertByOuterInner(Index j, Index i) { return insert(IsRowMajor ? j : i, IsRowMajor ? i : j); } /** Turns the matrix into the \em compressed format. */ void makeCompressed() { if(isCompressed()) return; eigen_internal_assert(m_outerIndex!=0 && m_outerSize>0); Index oldStart = m_outerIndex[1]; m_outerIndex[1] = m_innerNonZeros[0]; for(Index j=1; j0) { for(Index k=0; k(std::malloc(m_outerSize * sizeof(StorageIndex))); for (Index i = 0; i < m_outerSize; i++) { m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i]; } } /** Suppresses all nonzeros which are \b much \b smaller \b than \a reference under the tolerence \a epsilon */ void prune(const Scalar& reference, const RealScalar& epsilon = NumTraits::dummy_precision()) { prune(default_prunning_func(reference,epsilon)); } /** Turns the matrix into compressed format, and suppresses all nonzeros which do not satisfy the predicate \a keep. * The functor type \a KeepFunc must implement the following function: * \code * bool operator() (const Index& row, const Index& col, const Scalar& value) const; * \endcode * \sa prune(Scalar,RealScalar) */ template void prune(const KeepFunc& keep = KeepFunc()) { // TODO optimize the uncompressed mode to avoid moving and allocating the data twice makeCompressed(); StorageIndex k = 0; for(Index j=0; jrows() == rows && this->cols() == cols) return; // If one dimension is null, then there is nothing to be preserved if(rows==0 || cols==0) return resize(rows,cols); Index innerChange = IsRowMajor ? cols - this->cols() : rows - this->rows(); Index outerChange = IsRowMajor ? rows - this->rows() : cols - this->cols(); StorageIndex newInnerSize = convert_index(IsRowMajor ? cols : rows); // Deals with inner non zeros if (m_innerNonZeros) { // Resize m_innerNonZeros StorageIndex *newInnerNonZeros = static_cast(std::realloc(m_innerNonZeros, (m_outerSize + outerChange) * sizeof(StorageIndex))); if (!newInnerNonZeros) internal::throw_std_bad_alloc(); m_innerNonZeros = newInnerNonZeros; for(Index i=m_outerSize; i(std::malloc((m_outerSize+outerChange+1) * sizeof(StorageIndex))); if (!m_innerNonZeros) internal::throw_std_bad_alloc(); for(Index i = 0; i < m_outerSize; i++) m_innerNonZeros[i] = m_outerIndex[i+1] - m_outerIndex[i]; } // Change the m_innerNonZeros in case of a decrease of inner size if (m_innerNonZeros && innerChange < 0) { for(Index i = 0; i < m_outerSize + (std::min)(outerChange, Index(0)); i++) { StorageIndex &n = m_innerNonZeros[i]; StorageIndex start = m_outerIndex[i]; while (n > 0 && m_data.index(start+n-1) >= newInnerSize) --n; } } m_innerSize = newInnerSize; // Re-allocate outer index structure if necessary if (outerChange == 0) return; StorageIndex *newOuterIndex = static_cast(std::realloc(m_outerIndex, (m_outerSize + outerChange + 1) * sizeof(StorageIndex))); if (!newOuterIndex) internal::throw_std_bad_alloc(); m_outerIndex = newOuterIndex; if (outerChange > 0) { StorageIndex last = m_outerSize == 0 ? 0 : m_outerIndex[m_outerSize]; for(Index i=m_outerSize; i(std::malloc((outerSize + 1) * sizeof(StorageIndex))); if (!m_outerIndex) internal::throw_std_bad_alloc(); m_outerSize = outerSize; } if(m_innerNonZeros) { std::free(m_innerNonZeros); m_innerNonZeros = 0; } memset(m_outerIndex, 0, (m_outerSize+1)*sizeof(StorageIndex)); } /** \internal * Resize the nonzero vector to \a size */ void resizeNonZeros(Index size) { m_data.resize(size); } /** \returns a const expression of the diagonal coefficients. */ const ConstDiagonalReturnType diagonal() const { return ConstDiagonalReturnType(*this); } /** \returns a read-write expression of the diagonal coefficients. * \warning If the diagonal entries are written, then all diagonal * entries \b must already exist, otherwise an assertion will be raised. */ DiagonalReturnType diagonal() { return DiagonalReturnType(*this); } /** Default constructor yielding an empty \c 0 \c x \c 0 matrix */ inline SparseMatrix() : m_outerSize(-1), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) { check_template_parameters(); resize(0, 0); } /** Constructs a \a rows \c x \a cols empty matrix */ inline SparseMatrix(Index rows, Index cols) : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) { check_template_parameters(); resize(rows, cols); } /** Constructs a sparse matrix from the sparse expression \a other */ template inline SparseMatrix(const SparseMatrixBase& other) : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) { EIGEN_STATIC_ASSERT((internal::is_same::value), YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) check_template_parameters(); const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator::Flags & RowMajorBit); if (needToTranspose) *this = other.derived(); else { #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN #endif internal::call_assignment_no_alias(*this, other.derived()); } } /** Constructs a sparse matrix from the sparse selfadjoint view \a other */ template inline SparseMatrix(const SparseSelfAdjointView& other) : m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) { check_template_parameters(); Base::operator=(other); } /** Copy constructor (it performs a deep copy) */ inline SparseMatrix(const SparseMatrix& other) : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) { check_template_parameters(); *this = other.derived(); } /** \brief Copy constructor with in-place evaluation */ template SparseMatrix(const ReturnByValue& other) : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) { check_template_parameters(); initAssignment(other); other.evalTo(*this); } /** \brief Copy constructor with in-place evaluation */ template explicit SparseMatrix(const DiagonalBase& other) : Base(), m_outerSize(0), m_innerSize(0), m_outerIndex(0), m_innerNonZeros(0) { check_template_parameters(); *this = other.derived(); } /** Swaps the content of two sparse matrices of the same type. * This is a fast operation that simply swaps the underlying pointers and parameters. */ inline void swap(SparseMatrix& other) { //EIGEN_DBG_SPARSE(std::cout << "SparseMatrix:: swap\n"); std::swap(m_outerIndex, other.m_outerIndex); std::swap(m_innerSize, other.m_innerSize); std::swap(m_outerSize, other.m_outerSize); std::swap(m_innerNonZeros, other.m_innerNonZeros); m_data.swap(other.m_data); } /** Sets *this to the identity matrix. * This function also turns the matrix into compressed mode, and drop any reserved memory. */ inline void setIdentity() { eigen_assert(rows() == cols() && "ONLY FOR SQUARED MATRICES"); this->m_data.resize(rows()); Eigen::Map(this->m_data.indexPtr(), rows()).setLinSpaced(0, StorageIndex(rows()-1)); Eigen::Map(this->m_data.valuePtr(), rows()).setOnes(); Eigen::Map(this->m_outerIndex, rows()+1).setLinSpaced(0, StorageIndex(rows())); std::free(m_innerNonZeros); m_innerNonZeros = 0; } inline SparseMatrix& operator=(const SparseMatrix& other) { if (other.isRValue()) { swap(other.const_cast_derived()); } else if(this!=&other) { #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN #endif initAssignment(other); if(other.isCompressed()) { internal::smart_copy(other.m_outerIndex, other.m_outerIndex + m_outerSize + 1, m_outerIndex); m_data = other.m_data; } else { Base::operator=(other); } } return *this; } #ifndef EIGEN_PARSED_BY_DOXYGEN template inline SparseMatrix& operator=(const EigenBase& other) { return Base::operator=(other.derived()); } #endif // EIGEN_PARSED_BY_DOXYGEN template EIGEN_DONT_INLINE SparseMatrix& operator=(const SparseMatrixBase& other); friend std::ostream & operator << (std::ostream & s, const SparseMatrix& m) { EIGEN_DBG_SPARSE( s << "Nonzero entries:\n"; if(m.isCompressed()) { for (Index i=0; i&>(m); return s; } /** Destructor */ inline ~SparseMatrix() { std::free(m_outerIndex); std::free(m_innerNonZeros); } /** Overloaded for performance */ Scalar sum() const; # ifdef EIGEN_SPARSEMATRIX_PLUGIN # include EIGEN_SPARSEMATRIX_PLUGIN # endif protected: template void initAssignment(const Other& other) { resize(other.rows(), other.cols()); if(m_innerNonZeros) { std::free(m_innerNonZeros); m_innerNonZeros = 0; } } /** \internal * \sa insert(Index,Index) */ EIGEN_DONT_INLINE Scalar& insertCompressed(Index row, Index col); /** \internal * A vector object that is equal to 0 everywhere but v at the position i */ class SingletonVector { StorageIndex m_index; StorageIndex m_value; public: typedef StorageIndex value_type; SingletonVector(Index i, Index v) : m_index(convert_index(i)), m_value(convert_index(v)) {} StorageIndex operator[](Index i) const { return i==m_index ? m_value : 0; } }; /** \internal * \sa insert(Index,Index) */ EIGEN_DONT_INLINE Scalar& insertUncompressed(Index row, Index col); public: /** \internal * \sa insert(Index,Index) */ EIGEN_STRONG_INLINE Scalar& insertBackUncompressed(Index row, Index col) { const Index outer = IsRowMajor ? row : col; const Index inner = IsRowMajor ? col : row; eigen_assert(!isCompressed()); eigen_assert(m_innerNonZeros[outer]<=(m_outerIndex[outer+1] - m_outerIndex[outer])); Index p = m_outerIndex[outer] + m_innerNonZeros[outer]++; m_data.index(p) = convert_index(inner); return (m_data.value(p) = Scalar(0)); } private: static void check_template_parameters() { EIGEN_STATIC_ASSERT(NumTraits::IsSigned,THE_INDEX_TYPE_MUST_BE_A_SIGNED_TYPE); EIGEN_STATIC_ASSERT((Options&(ColMajor|RowMajor))==Options,INVALID_MATRIX_TEMPLATE_PARAMETERS); } struct default_prunning_func { default_prunning_func(const Scalar& ref, const RealScalar& eps) : reference(ref), epsilon(eps) {} inline bool operator() (const Index&, const Index&, const Scalar& value) const { return !internal::isMuchSmallerThan(value, reference, epsilon); } Scalar reference; RealScalar epsilon; }; }; namespace internal { template void set_from_triplets(const InputIterator& begin, const InputIterator& end, SparseMatrixType& mat, DupFunctor dup_func) { enum { IsRowMajor = SparseMatrixType::IsRowMajor }; typedef typename SparseMatrixType::Scalar Scalar; typedef typename SparseMatrixType::StorageIndex StorageIndex; SparseMatrix trMat(mat.rows(),mat.cols()); if(begin!=end) { // pass 1: count the nnz per inner-vector typename SparseMatrixType::IndexVector wi(trMat.outerSize()); wi.setZero(); for(InputIterator it(begin); it!=end; ++it) { eigen_assert(it->row()>=0 && it->row()col()>=0 && it->col()col() : it->row())++; } // pass 2: insert all the elements into trMat trMat.reserve(wi); for(InputIterator it(begin); it!=end; ++it) trMat.insertBackUncompressed(it->row(),it->col()) = it->value(); // pass 3: trMat.collapseDuplicates(dup_func); } // pass 4: transposed copy -> implicit sorting mat = trMat; } } /** Fill the matrix \c *this with the list of \em triplets defined by the iterator range \a begin - \a end. * * A \em triplet is a tuple (i,j,value) defining a non-zero element. * The input list of triplets does not have to be sorted, and can contains duplicated elements. * In any case, the result is a \b sorted and \b compressed sparse matrix where the duplicates have been summed up. * This is a \em O(n) operation, with \em n the number of triplet elements. * The initial contents of \c *this is destroyed. * The matrix \c *this must be properly resized beforehand using the SparseMatrix(Index,Index) constructor, * or the resize(Index,Index) method. The sizes are not extracted from the triplet list. * * The \a InputIterators value_type must provide the following interface: * \code * Scalar value() const; // the value * Scalar row() const; // the row index i * Scalar col() const; // the column index j * \endcode * See for instance the Eigen::Triplet template class. * * Here is a typical usage example: * \code typedef Triplet T; std::vector tripletList; triplets.reserve(estimation_of_entries); for(...) { // ... tripletList.push_back(T(i,j,v_ij)); } SparseMatrixType m(rows,cols); m.setFromTriplets(tripletList.begin(), tripletList.end()); // m is ready to go! * \endcode * * \warning The list of triplets is read multiple times (at least twice). Therefore, it is not recommended to define * an abstract iterator over a complex data-structure that would be expensive to evaluate. The triplets should rather * be explicitely stored into a std::vector for instance. */ template template void SparseMatrix::setFromTriplets(const InputIterators& begin, const InputIterators& end) { internal::set_from_triplets >(begin, end, *this, internal::scalar_sum_op()); } /** The same as setFromTriplets but when duplicates are met the functor \a dup_func is applied: * \code * value = dup_func(OldValue, NewValue) * \endcode * Here is a C++11 example keeping the latest entry only: * \code * mat.setFromTriplets(triplets.begin(), triplets.end(), [] (const Scalar&,const Scalar &b) { return b; }); * \endcode */ template template void SparseMatrix::setFromTriplets(const InputIterators& begin, const InputIterators& end, DupFunctor dup_func) { internal::set_from_triplets, DupFunctor>(begin, end, *this, dup_func); } /** \internal */ template template void SparseMatrix::collapseDuplicates(DupFunctor dup_func) { eigen_assert(!isCompressed()); // TODO, in practice we should be able to use m_innerNonZeros for that task IndexVector wi(innerSize()); wi.fill(-1); StorageIndex count = 0; // for each inner-vector, wi[inner_index] will hold the position of first element into the index/value buffers for(Index j=0; j=start) { // we already meet this entry => accumulate it m_data.value(wi(i)) = dup_func(m_data.value(wi(i)), m_data.value(k)); } else { m_data.value(count) = m_data.value(k); m_data.index(count) = m_data.index(k); wi(i) = count; ++count; } } m_outerIndex[j] = start; } m_outerIndex[m_outerSize] = count; // turn the matrix into compressed form std::free(m_innerNonZeros); m_innerNonZeros = 0; m_data.resize(m_outerIndex[m_outerSize]); } template template EIGEN_DONT_INLINE SparseMatrix& SparseMatrix::operator=(const SparseMatrixBase& other) { EIGEN_STATIC_ASSERT((internal::is_same::value), YOU_MIXED_DIFFERENT_NUMERIC_TYPES__YOU_NEED_TO_USE_THE_CAST_METHOD_OF_MATRIXBASE_TO_CAST_NUMERIC_TYPES_EXPLICITLY) #ifdef EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN EIGEN_SPARSE_CREATE_TEMPORARY_PLUGIN #endif const bool needToTranspose = (Flags & RowMajorBit) != (internal::evaluator::Flags & RowMajorBit); if (needToTranspose) { #ifdef EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN EIGEN_SPARSE_TRANSPOSED_COPY_PLUGIN #endif // two passes algorithm: // 1 - compute the number of coeffs per dest inner vector // 2 - do the actual copy/eval // Since each coeff of the rhs has to be evaluated twice, let's evaluate it if needed typedef typename internal::nested_eval::type >::type OtherCopy; typedef typename internal::remove_all::type _OtherCopy; typedef internal::evaluator<_OtherCopy> OtherCopyEval; OtherCopy otherCopy(other.derived()); OtherCopyEval otherCopyEval(otherCopy); SparseMatrix dest(other.rows(),other.cols()); Eigen::Map (dest.m_outerIndex,dest.outerSize()).setZero(); // pass 1 // FIXME the above copy could be merged with that pass for (Index j=0; jswap(dest); return *this; } else { if(other.isRValue()) { initAssignment(other.derived()); } // there is no special optimization return Base::operator=(other.derived()); } } template typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insert(Index row, Index col) { eigen_assert(row>=0 && row=0 && col(std::malloc(m_outerSize * sizeof(StorageIndex))); if(!m_innerNonZeros) internal::throw_std_bad_alloc(); memset(m_innerNonZeros, 0, (m_outerSize)*sizeof(StorageIndex)); // pack all inner-vectors to the end of the pre-allocated space // and allocate the entire free-space to the first inner-vector StorageIndex end = convert_index(m_data.allocatedSize()); for(Index j=1; j<=m_outerSize; ++j) m_outerIndex[j] = end; } else { // turn the matrix into non-compressed mode m_innerNonZeros = static_cast(std::malloc(m_outerSize * sizeof(StorageIndex))); if(!m_innerNonZeros) internal::throw_std_bad_alloc(); for(Index j=0; j=0 && m_innerNonZeros[j]==0) m_outerIndex[j--] = p; // push back the new element ++m_innerNonZeros[outer]; m_data.append(Scalar(0), inner); // check for reallocation if(data_end != m_data.allocatedSize()) { // m_data has been reallocated // -> move remaining inner-vectors back to the end of the free-space // so that the entire free-space is allocated to the current inner-vector. eigen_internal_assert(data_end < m_data.allocatedSize()); StorageIndex new_end = convert_index(m_data.allocatedSize()); for(Index k=outer+1; k<=m_outerSize; ++k) if(m_outerIndex[k]==data_end) m_outerIndex[k] = new_end; } return m_data.value(p); } // Second case: the next inner-vector is packed to the end // and the current inner-vector end match the used-space. if(m_outerIndex[outer+1]==data_end && m_outerIndex[outer]+m_innerNonZeros[outer]==m_data.size()) { eigen_internal_assert(outer+1==m_outerSize || m_innerNonZeros[outer+1]==0); // add space for the new element ++m_innerNonZeros[outer]; m_data.resize(m_data.size()+1); // check for reallocation if(data_end != m_data.allocatedSize()) { // m_data has been reallocated // -> move remaining inner-vectors back to the end of the free-space // so that the entire free-space is allocated to the current inner-vector. eigen_internal_assert(data_end < m_data.allocatedSize()); StorageIndex new_end = convert_index(m_data.allocatedSize()); for(Index k=outer+1; k<=m_outerSize; ++k) if(m_outerIndex[k]==data_end) m_outerIndex[k] = new_end; } // and insert it at the right position (sorted insertion) Index startId = m_outerIndex[outer]; Index p = m_outerIndex[outer]+m_innerNonZeros[outer]-1; while ( (p > startId) && (m_data.index(p-1) > inner) ) { m_data.index(p) = m_data.index(p-1); m_data.value(p) = m_data.value(p-1); --p; } m_data.index(p) = convert_index(inner); return (m_data.value(p) = 0); } if(m_data.size() != m_data.allocatedSize()) { // make sure the matrix is compatible to random un-compressed insertion: m_data.resize(m_data.allocatedSize()); this->reserveInnerVectors(Array::Constant(m_outerSize, 2)); } return insertUncompressed(row,col); } template EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertUncompressed(Index row, Index col) { eigen_assert(!isCompressed()); const Index outer = IsRowMajor ? row : col; const StorageIndex inner = convert_index(IsRowMajor ? col : row); Index room = m_outerIndex[outer+1] - m_outerIndex[outer]; StorageIndex innerNNZ = m_innerNonZeros[outer]; if(innerNNZ>=room) { // this inner vector is full, we need to reallocate the whole buffer :( reserve(SingletonVector(outer,std::max(2,innerNNZ))); } Index startId = m_outerIndex[outer]; Index p = startId + m_innerNonZeros[outer]; while ( (p > startId) && (m_data.index(p-1) > inner) ) { m_data.index(p) = m_data.index(p-1); m_data.value(p) = m_data.value(p-1); --p; } eigen_assert((p<=startId || m_data.index(p-1)!=inner) && "you cannot insert an element that already exists, you must call coeffRef to this end"); m_innerNonZeros[outer]++; m_data.index(p) = inner; return (m_data.value(p) = Scalar(0)); } template EIGEN_DONT_INLINE typename SparseMatrix<_Scalar,_Options,_StorageIndex>::Scalar& SparseMatrix<_Scalar,_Options,_StorageIndex>::insertCompressed(Index row, Index col) { eigen_assert(isCompressed()); const Index outer = IsRowMajor ? row : col; const Index inner = IsRowMajor ? col : row; Index previousOuter = outer; if (m_outerIndex[outer+1]==0) { // we start a new inner vector while (previousOuter>=0 && m_outerIndex[previousOuter]==0) { m_outerIndex[previousOuter] = convert_index(m_data.size()); --previousOuter; } m_outerIndex[outer+1] = m_outerIndex[outer]; } // here we have to handle the tricky case where the outerIndex array // starts with: [ 0 0 0 0 0 1 ...] and we are inserted in, e.g., // the 2nd inner vector... bool isLastVec = (!(previousOuter==-1 && m_data.size()!=0)) && (std::size_t(m_outerIndex[outer+1]) == m_data.size()); std::size_t startId = m_outerIndex[outer]; // FIXME let's make sure sizeof(long int) == sizeof(std::size_t) std::size_t p = m_outerIndex[outer+1]; ++m_outerIndex[outer+1]; double reallocRatio = 1; if (m_data.allocatedSize()<=m_data.size()) { // if there is no preallocated memory, let's reserve a minimum of 32 elements if (m_data.size()==0) { m_data.reserve(32); } else { // we need to reallocate the data, to reduce multiple reallocations // we use a smart resize algorithm based on the current filling ratio // in addition, we use double to avoid integers overflows double nnzEstimate = double(m_outerIndex[outer])*double(m_outerSize)/double(outer+1); reallocRatio = (nnzEstimate-double(m_data.size()))/double(m_data.size()); // furthermore we bound the realloc ratio to: // 1) reduce multiple minor realloc when the matrix is almost filled // 2) avoid to allocate too much memory when the matrix is almost empty reallocRatio = (std::min)((std::max)(reallocRatio,1.5),8.); } } m_data.resize(m_data.size()+1,reallocRatio); if (!isLastVec) { if (previousOuter==-1) { // oops wrong guess. // let's correct the outer offsets for (Index k=0; k<=(outer+1); ++k) m_outerIndex[k] = 0; Index k=outer+1; while(m_outerIndex[k]==0) m_outerIndex[k++] = 1; while (k<=m_outerSize && m_outerIndex[k]!=0) m_outerIndex[k++]++; p = 0; --k; k = m_outerIndex[k]-1; while (k>0) { m_data.index(k) = m_data.index(k-1); m_data.value(k) = m_data.value(k-1); k--; } } else { // we are not inserting into the last inner vec // update outer indices: Index j = outer+2; while (j<=m_outerSize && m_outerIndex[j]!=0) m_outerIndex[j++]++; --j; // shift data of last vecs: Index k = m_outerIndex[j]-1; while (k>=Index(p)) { m_data.index(k) = m_data.index(k-1); m_data.value(k) = m_data.value(k-1); k--; } } } while ( (p > startId) && (m_data.index(p-1) > inner) ) { m_data.index(p) = m_data.index(p-1); m_data.value(p) = m_data.value(p-1); --p; } m_data.index(p) = inner; return (m_data.value(p) = Scalar(0)); } namespace internal { template struct evaluator > : evaluator > > { typedef evaluator > > Base; typedef SparseMatrix<_Scalar,_Options,_StorageIndex> SparseMatrixType; evaluator() : Base() {} explicit evaluator(const SparseMatrixType &mat) : Base(mat) {} }; } } // end namespace Eigen #endif // EIGEN_SPARSEMATRIX_H