/** \returns an expression of the coefficient wise product of \c *this and \a other * * \sa MatrixBase::cwiseProduct */ template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const EIGEN_CWISE_BINARY_RETURN_TYPE(Derived,OtherDerived,product) operator*(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const { return EIGEN_CWISE_BINARY_RETURN_TYPE(Derived,OtherDerived,product)(derived(), other.derived()); } /** \returns an expression of the coefficient wise quotient of \c *this and \a other * * \sa MatrixBase::cwiseQuotient */ template EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> operator/(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const { return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); } /** \returns an expression of the coefficient-wise min of \c *this and \a other * * Example: \include Cwise_min.cpp * Output: \verbinclude Cwise_min.out * * \sa max() */ EIGEN_MAKE_CWISE_BINARY_OP(min,min) /** \returns an expression of the coefficient-wise min of \c *this and scalar \a other * * \sa max() */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const CwiseNullaryOp, PlainObject> > #ifdef EIGEN_PARSED_BY_DOXYGEN min #else (min) #endif (const Scalar &other) const { return (min)(Derived::PlainObject::Constant(rows(), cols(), other)); } /** \returns an expression of the coefficient-wise max of \c *this and \a other * * Example: \include Cwise_max.cpp * Output: \verbinclude Cwise_max.out * * \sa min() */ EIGEN_MAKE_CWISE_BINARY_OP(max,max) /** \returns an expression of the coefficient-wise max of \c *this and scalar \a other * * \sa min() */ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const CwiseNullaryOp, PlainObject> > #ifdef EIGEN_PARSED_BY_DOXYGEN max #else (max) #endif (const Scalar &other) const { return (max)(Derived::PlainObject::Constant(rows(), cols(), other)); } /** \returns an expression of the coefficient-wise power of \c *this to the given array of \a exponents. * * This function computes the coefficient-wise power. * * Example: \include Cwise_array_power_array.cpp * Output: \verbinclude Cwise_array_power_array.out */ EIGEN_MAKE_CWISE_BINARY_OP(pow,pow) #ifndef EIGEN_PARSED_BY_DOXYGEN EIGEN_MAKE_SCALAR_BINARY_OP_ONTHERIGHT(pow,pow) #else /** \returns an expression of the coefficients of \c *this rasied to the constant power \a exponent * * \tparam T is the scalar type of \a exponent. It must be compatible with the scalar type of the given expression. * * This function computes the coefficient-wise power. The function MatrixBase::pow() in the * unsupported module MatrixFunctions computes the matrix power. * * Example: \include Cwise_pow.cpp * Output: \verbinclude Cwise_pow.out * * \sa ArrayBase::pow(ArrayBase), square(), cube(), exp(), log() */ template const CwiseBinaryOp,Derived,Constant > pow(const T& exponent) const; #endif // TODO code generating macros could be moved to Macros.h and could include generation of documentation #define EIGEN_MAKE_CWISE_COMP_OP(OP, COMPARATOR) \ template \ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryOp, const Derived, const OtherDerived> \ OP(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const \ { \ return CwiseBinaryOp, const Derived, const OtherDerived>(derived(), other.derived()); \ }\ typedef CwiseBinaryOp, const Derived, const CwiseNullaryOp, PlainObject> > Cmp ## COMPARATOR ## ReturnType; \ typedef CwiseBinaryOp, const CwiseNullaryOp, PlainObject>, const Derived > RCmp ## COMPARATOR ## ReturnType; \ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const Cmp ## COMPARATOR ## ReturnType \ OP(const Scalar& s) const { \ return this->OP(Derived::PlainObject::Constant(rows(), cols(), s)); \ } \ EIGEN_DEVICE_FUNC friend EIGEN_STRONG_INLINE const RCmp ## COMPARATOR ## ReturnType \ OP(const Scalar& s, const EIGEN_CURRENT_STORAGE_BASE_CLASS& d) { \ return Derived::PlainObject::Constant(d.rows(), d.cols(), s).OP(d); \ } #define EIGEN_MAKE_CWISE_COMP_R_OP(OP, R_OP, RCOMPARATOR) \ template \ EIGEN_DEVICE_FUNC EIGEN_STRONG_INLINE const CwiseBinaryOp, const OtherDerived, const Derived> \ OP(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const \ { \ return CwiseBinaryOp, const OtherDerived, const Derived>(other.derived(), derived()); \ } \ EIGEN_DEVICE_FUNC \ inline const RCmp ## RCOMPARATOR ## ReturnType \ OP(const Scalar& s) const { \ return Derived::PlainObject::Constant(rows(), cols(), s).R_OP(*this); \ } \ friend inline const Cmp ## RCOMPARATOR ## ReturnType \ OP(const Scalar& s, const Derived& d) { \ return d.R_OP(Derived::PlainObject::Constant(d.rows(), d.cols(), s)); \ } /** \returns an expression of the coefficient-wise \< operator of *this and \a other * * Example: \include Cwise_less.cpp * Output: \verbinclude Cwise_less.out * * \sa all(), any(), operator>(), operator<=() */ EIGEN_MAKE_CWISE_COMP_OP(operator<, LT) /** \returns an expression of the coefficient-wise \<= operator of *this and \a other * * Example: \include Cwise_less_equal.cpp * Output: \verbinclude Cwise_less_equal.out * * \sa all(), any(), operator>=(), operator<() */ EIGEN_MAKE_CWISE_COMP_OP(operator<=, LE) /** \returns an expression of the coefficient-wise \> operator of *this and \a other * * Example: \include Cwise_greater.cpp * Output: \verbinclude Cwise_greater.out * * \sa all(), any(), operator>=(), operator<() */ EIGEN_MAKE_CWISE_COMP_R_OP(operator>, operator<, LT) /** \returns an expression of the coefficient-wise \>= operator of *this and \a other * * Example: \include Cwise_greater_equal.cpp * Output: \verbinclude Cwise_greater_equal.out * * \sa all(), any(), operator>(), operator<=() */ EIGEN_MAKE_CWISE_COMP_R_OP(operator>=, operator<=, LE) /** \returns an expression of the coefficient-wise == operator of *this and \a other * * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. * In order to check for equality between two vectors or matrices with floating-point coefficients, it is * generally a far better idea to use a fuzzy comparison as provided by isApprox() and * isMuchSmallerThan(). * * Example: \include Cwise_equal_equal.cpp * Output: \verbinclude Cwise_equal_equal.out * * \sa all(), any(), isApprox(), isMuchSmallerThan() */ EIGEN_MAKE_CWISE_COMP_OP(operator==, EQ) /** \returns an expression of the coefficient-wise != operator of *this and \a other * * \warning this performs an exact comparison, which is generally a bad idea with floating-point types. * In order to check for equality between two vectors or matrices with floating-point coefficients, it is * generally a far better idea to use a fuzzy comparison as provided by isApprox() and * isMuchSmallerThan(). * * Example: \include Cwise_not_equal.cpp * Output: \verbinclude Cwise_not_equal.out * * \sa all(), any(), isApprox(), isMuchSmallerThan() */ EIGEN_MAKE_CWISE_COMP_OP(operator!=, NEQ) #undef EIGEN_MAKE_CWISE_COMP_OP #undef EIGEN_MAKE_CWISE_COMP_R_OP // scalar addition #ifndef EIGEN_PARSED_BY_DOXYGEN EIGEN_MAKE_SCALAR_BINARY_OP(operator+,sum) #else /** \returns an expression of \c *this with each coeff incremented by the constant \a scalar * * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. * * Example: \include Cwise_plus.cpp * Output: \verbinclude Cwise_plus.out * * \sa operator+=(), operator-() */ template const CwiseBinaryOp,Derived,Constant > operator+(const T& scalar) const; /** \returns an expression of \a expr with each coeff incremented by the constant \a scalar * * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. */ template friend const CwiseBinaryOp,Constant,Derived> operator+(const T& scalar, const StorageBaseType& expr); #endif #ifndef EIGEN_PARSED_BY_DOXYGEN EIGEN_MAKE_SCALAR_BINARY_OP(operator-,difference) #else /** \returns an expression of \c *this with each coeff decremented by the constant \a scalar * * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. * * Example: \include Cwise_minus.cpp * Output: \verbinclude Cwise_minus.out * * \sa operator+=(), operator-() */ template const CwiseBinaryOp,Derived,Constant > operator-(const T& scalar) const; /** \returns an expression of the constant matrix of value \a scalar decremented by the coefficients of \a expr * * \tparam T is the scalar type of \a scalar. It must be compatible with the scalar type of the given expression. */ template friend const CwiseBinaryOp,Constant,Derived> operator-(const T& scalar, const StorageBaseType& expr); #endif #ifndef EIGEN_PARSED_BY_DOXYGEN EIGEN_MAKE_SCALAR_BINARY_OP_ONTHELEFT(operator/,quotient) #else /** * \brief Component-wise division of the scalar \a s by array elements of \a a. * * \tparam Scalar is the scalar type of \a x. It must be compatible with the scalar type of the given array expression (\c Derived::Scalar). */ template friend inline const CwiseBinaryOp,Constant,Derived> operator/(const T& s,const StorageBaseType& a); #endif /** \returns an expression of the coefficient-wise ^ operator of *this and \a other * * \warning this operator is for expression of bool only. * * Example: \include Cwise_boolean_xor.cpp * Output: \verbinclude Cwise_boolean_xor.out * * \sa operator&&(), select() */ template EIGEN_DEVICE_FUNC inline const CwiseBinaryOp operator^(const EIGEN_CURRENT_STORAGE_BASE_CLASS &other) const { EIGEN_STATIC_ASSERT((internal::is_same::value && internal::is_same::value), THIS_METHOD_IS_ONLY_FOR_EXPRESSIONS_OF_BOOL); return CwiseBinaryOp(derived(),other.derived()); } // NOTE disabled until we agree on argument order #if 0 /** \cpp11 \returns an expression of the coefficient-wise polygamma function. * * \specialfunctions_module * * It returns the \a n -th derivative of the digamma(psi) evaluated at \c *this. * * \warning Be careful with the order of the parameters: x.polygamma(n) is equivalent to polygamma(n,x) * * \sa Eigen::polygamma() */ template inline const CwiseBinaryOp, const DerivedN, const Derived> polygamma(const EIGEN_CURRENT_STORAGE_BASE_CLASS &n) const { return CwiseBinaryOp, const DerivedN, const Derived>(n.derived(), this->derived()); } #endif /** \returns an expression of the coefficient-wise zeta function. * * \specialfunctions_module * * It returns the Riemann zeta function of two arguments \c *this and \a q: * * \param *this is the exposent, it must be > 1 * \param q is the shift, it must be > 0 * * \note This function supports only float and double scalar types. To support other scalar types, the user has * to provide implementations of zeta(T,T) for any scalar type T to be supported. * * This method is an alias for zeta(*this,q); * * \sa Eigen::zeta() */ template inline const CwiseBinaryOp, const Derived, const DerivedQ> zeta(const EIGEN_CURRENT_STORAGE_BASE_CLASS &q) const { return CwiseBinaryOp, const Derived, const DerivedQ>(this->derived(), q.derived()); }