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Abstract

The rate of future global sea-level rise will likely increase due to elevated ocean tem-
peratures and increases in land-ice melt. Nearly 40 percent of the U.S. population lives in
coastal communities, and coastal properties are expected to become more prone to coastal
flooding in the coming decades due to relative sea-level rise caused by both global and local
factors. Understanding how this projected sea-level rise translates to lost economic value is
critical to the decisions of insurance companies, banks, governments, investors, and regula-
tory agencies. We use probability distributions of local sea-level rise projections, National
Oceanic and Atmospheric (NOAA) coastal digital elevation models, and CoreLogic housing
data to estimate a range of housing market value impairments from future sea-level rise
in 15 major U.S. coastal cities as well as the associated timing of those impairments. Our
estimates include only residential properties with four or fewer units and thus provide a
lower bound estimate of economic risk from sea-level rise. We estimate that within these 15
major U.S. coastal metros, sea-level rise will inundate between 2,000 and 28,000 properties
by 2100 in a relatively low greenhouse gas concentration scenario and between 7,000 to
77,000 properties under an unlikely, extreme greenhouse gas concentration scenario. These
estimates equate to direct economic losses between $0.1 to $1.8 billion under the low green-
house gas scenario and $3.8 to $50.6 billion under the high scenario.
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1 Introduction

Climate change is a persistent and substantial threat to society and the functioning of our

economic systems (USGCRP, 2018). Climate change impacts are already manifesting through

more frequent and extreme weather events (NOAAa, 2019), higher temperatures (IPCC, 2014),

and rising seas (Sweet et al., 2017). Sea-level rise (SLR) is one of the more pernicious conse-

quences of climate change and will likely negatively impact large portions of the United States

(U.S.) population and economy in the coming decades. Roughly 40 percent of the U.S. popula-

tion lives in coastal communities (NOAAb, 2019), with approximately 7 million people and 1.9

million homes at elevations within 1.8m (6ft) above sea-level (Hauer et al., 2016; Rao, 2017).

As sea-levels slowly rise, these locations will likely face increased nuisance flooding (Moftakhari

et al., 2015; Sweet et al., 2017), enhanced storm surge inundation (Amante, 2019), and perma-

nent change of coastlines. In extreme cases, some coastal areas may experience out-migration,

and city planners may need to implement policies to facilitate population departure (Wrathall

et al., 2019). Rising sea-levels over the next century will potentially disrupt housing markets

and cause large economic losses.

1.1 Climate Change, Sea-level Rise, and Economics

Estimates of the economic costs of climate change date back nearly 30 years (Smith and

Tirpak, 1989; Nordhaus, 1991) and estimates of the economic costs of SLR date back more than

20 years (Fankhauser, 1995). Today, theoretical economists and macroeconomists continue to

refine estimates for the social cost of carbon (Stern, 2008; Gillingham and Stock, 2018; Pindyck,

2019) and the broad economic consequences of climate change (Bansal et al., 2016; Colacito

et al., 2018; Auffhammer, 2018). Recent empirical research suggests that properties prone to

coastal flooding from hurricanes have lower values than similar properties in unaffected areas

(Ortega and Taspinar, 2018). Multiple markets prone to SLR inundation are also starting to
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witness slower price appreciation growth (Mcalpine and Porter, 2018). Furthermore, properties

most prone to SLR inundation may face lower valuations compared with similar properties in

less prone areas (Bernstein et al., 2019).

The banking and finance world are also starting to consider the economic impacts of climate

change. In 2015, Mark Carney, the governor of the Bank of England, gave one of the first speeches

on the role of central banks in a changing climate. Carney described the challenges and risks of

climate change as the “Tragedy of the Horizon” and stated that the cost of climate change will

most likely be felt by future generations, beyond typical business and political cycles (Carney,

2015).1 Longer-term climate impacts may pose issues for businesses, investors, and financial

institutions in the coming decades. In particular, attention is being focused on increased physical

impacts from climate change, such as fires, floods, and hurricanes. Markets also face transitional

risks that may take the form of carbon policy changes, shifts in technology (e.g., from fossil

fuel technology to renewables) and changes in investor preferences toward more environmentally

sustainable business practices (FSB-TCFD, 2017). In recent years, central banks around the

world started to examine their potential role in mitigating economic risks from climate change

and the unique risks banks face from climate change, such as investments in areas more prone

to extreme weather events (NGFS, 2017; Campiglio et al., 2018; BOE, 2019). Private financial

institutions are also starting to consider climate change impacts within their own businesses and

investment strategies, signaling the reallocation of financial capital away from carbon intensive

industries, such as coal and other fossil fuels, towards more sustainable, renewable energy sources

(Black Rock, 2019; CoBank, 2019; Goldman Sachs, 2019). Through these multiple outlets, the

banking and finance sector is beginning to consider the economic effects that climate change

may pose in the coming decades.

However, as the awareness of climate change grows, risk practitioners face a series of chal-

1Robert Solow coined the term “intergenerational equity” in 1974 to describe a similar phenomena relating
to exhaustible nature resources (Solow, 1974).
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lenges. A primary challenge for economists and financial analysts is understanding climate

science and accurately linking climate change to some measure of economic or financial risk. Re-

cent plain-language articles on climate help bridge the knowledge gap between economists and

climate science and outline the economic implications of climate change (Hsiang and Kopp, 2018;

Auffhammer, 2018; Gillingham and Stock, 2018). Two additional challenges risk practitioners

face are understanding the uncertainties associated with climate projections and accounting for

the economic or financial value linked to those climate projections. Uncertainty in climate pro-

jections needs to be accounted for when estimating the economic implications of climate change,

especially when assessing the potential impacts of future SLR on the U.S. housing market. For

example, depending on carbon emissions, land-use changes, and other global, regional, and local

factors that affect sea-levels, SLR could displace between 4 - 13 million people in the U.S. over

the next century (Hauer et al., 2016). Coastal communities are facing a wide-range of risks, with

differing social, economic, and financial costs. Properly accounting for the range of economic

and financial risks that results from climate change and SLR uncertainty is crucial to accurately

balance the financial costs and benefits of potential policy choices.

1.2 Climate Change Uncertainty and Sea-level Rise

1.2.1 Climate Models, Scenarios, and Uncertainty

Accounting for climate change uncertainty is critical for estimating the range of economic

costs associated with future SLR. Hawkins and Sutton (2009) separate total climate change

uncertainty into three broad categories: climate scenario uncertainty, internal climate variability

(i.e., natural climate variability separable from human influences), and model uncertainty. In

concert, these sources of climate uncertainty can affect economic decision-making and the costs

attributed to climate change impacts such as SLR inundation (Heal and Millner, 2014).

Future atmospheric greenhouse gas (GHG) concentrations are one major source of climate
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uncertainty. The scientific literature and climate policy publications outline a series of commonly

used, independent scenarios known as Representative Concentration Pathways (RCP), e.g., RCP

2.6, 4.5, 6.0, and 8.5 (Moss et al., 2010; IPCC, 2014). Each RCP scenario is associated with a

given level of future atmospheric greenhouse gas (GHG) concentrations that results from differing

socioeconomic, technology, and biophysical assumptions in specific integrated assessment models

(IAMs). As a result of these independent assumptions, the RCP scenarios depict progressively

higher levels of GHG concentrations, elevated global temperatures, and, by extension, accelerated

increases in global sea-levels. For example, under RCP 2.6, global GHG concentrations are

projected to rise modestly to 490 ppm by 2100, global mean temperatures are projected to

rise by 1.5oC, and global mean sea-level is projected to rise by 49 cm. Under RCP 8.5, GHG

concentrations are projected to rise to 1370 ppm by 2100, mean temperatures are projected to

rise by 4.9oC, and global mean sea-level is projected to rise 79 cm (Moss et al., 2010; Rogelj et al.,

2012; Wayne, 2013; Kopp et al., 2017).2 As these data demonstrate, climate scenario uncertainty

contributes to a wide range of potential outcomes, and is especially important on longer-term

horizons (>60 years; Hawkins and Sutton (2009)). By extension, the economic consequences of

climate change can be very different solely based on the climate scenario.

Analysts and social science researchers (who may have limited knowledge of climate science)

are often charged with making a judgement on which RCP scenario(s) to analyze. The RCP

scenarios are independent and result from different combinations of economic, technological,

demographic, policy, and energy source futures. Practitioners are often required to make a

value judgment on climate scenarios or analyze the economic effects of each climate scenario,

arriving at a range of outcomes. This approach, while useful, is limited as it doesn’t account for

uncertainty within each of the RCP scenarios.3

2Under current carbon emission policies and energy transitions, empirical evidence would suggest that RCP
8.5 is less likely, and in reality, we are currently closer to a medium GHG concentration scenario (RCP 4.5)(Haus-
father and Peters, 2020). Recent research accounted for economic risks associated solely with GHG scenarios
(e.g., RCP 2.6, 4.5, and 8.5)(Zillow, 2018). Our work is in line with those results, but includes uncertainty around
those commonly analyzed scenarios.

3Government agencies such as the National Oceanic and Atmospheric Administration (NOAA) have also
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The second and third major sources of climate uncertainty are internal climate variability

(natural variability) and modeling uncertainty. In the near term (<20 years), a majority of

climate uncertainty is driven by internal variability, i.e., natural climate variability (climate

variation separable from human influences); this is especially true for regional scenarios (Hawkins

and Sutton, 2009). The global climate system is chaotic, which makes it sensitive to the initial

model parameters. In the medium-term (20-50 years), model uncertainty, or the spread of

estimates across various climate models, is the main contributor to climate uncertainty (Hawkins

and Sutton, 2009). As previously mentioned, global climate scenarios (i.e., GHG concentration

scenarios) contribute most to total uncertainty when time horizons exceed 60 years into the

future (Hawkins and Sutton, 2009; Heal and Millner, 2014).4 It is important to account for

these various sources of climate change uncertainty to estimate the range of economic costs

associated with future SLR over the next 80 years.

1.2.2 Sea-level Rise Uncertainty

Large climate change uncertainty contributes directly to a range of future SLR projections

through the end of the century and can make it challenging to assess potential economic costs

from SLR. Under the low GHG concentration scenario (RCP 2.6), projections for global mean

SLR range from 0.3 to 0.8 meters (5th to 95th percentiles) by the end of the century (Kopp

et al., 2017). Under the high GHG concentration scenario (RCP 8.5), mean SLR is expected

to range from 0.5 to 1.2 meters (5th to 95th percentiles; Kopp et al. (2017)). Uncertainty in

local SLR projections can be even more extreme. Kopp et al. (2014, 2017) provide local sea-

level projections that are informed by a combination of expert community assessment, expert

created their own SLR projections with the intent of making climate risk information more accessible to the non-
scientific public. However, easy-to-use scenarios can mask uncertainty around the underlying climate scenarios.
For example, NOAA created their own SLR projections that are based on the underlying GHG concentration
scenarios which obfuscate from the uncertainty within each of those climate scenarios (Sweet et al., 2017; NOAAc,
2019; Kopp et al., 2014). NOAA outlines 5 SLR pathways (e.g., low. . . extreme) for each of its local tidal stations.
These pathways are based on exceedance thresholds, which utilize parametric uncertainty, but does not map easily
to parametric distributions of uncertainty within each GHG scenario (RCP 2.6, 4.5, 8.5).

4Figure 3 in Hawkins and Sutton (2009) illustrates the change in contribution to climate uncertainty over
time from the three sources: scenario uncertainty, internal variability, and model uncertainty.
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elicitation, and process modeling, and incorporate the various sources of climate uncertainty

within GHG concentration scenarios (e.g., RCP 2.6, 4.5, and 8.5).5 For example, future SLR

estimates for Miami, Florida range from 0.2 and 1.0 meters under RCP 2.6 and between 0.4 to

1.4 meters under RCP 8.5, by the end of the century (Kopp et al., 2017). SLR estimates for New

York City (NYC) are even more uncertain, ranging from 0.2 to 1.2 meters for RCP 2.6 and from

0.4 to 1.7 meters for RCP 8.5, through 2100 (Kopp et al., 2017). Other additional factors, such

as accelerated Antarctic ice sheet melt can further exacerbate uncertainty in mean sea-level and

local SLR projections through the end of the century, amplifying the range of economic impacts

from SLR (Deconto and Pollard, 2016).6

This research incorporates uncertainty in future SLR projections caused by global climate

change and regional and local processes to estimate a range of future U.S. housing market value

impairments. Specifically, we use probability distributions of local SLR projections, National

Oceanic and Atmospheric (NOAA) coastal digital elevation models (DEMs), and CoreLogic

housing data to estimate housing market value impairment from future SLR inundation in 15

major U.S. coastal metros.

2 Methods and Data

2.1 Discount Rates, Time Value, and Value Impairment Estimates

An important factor in estimating the impaired value of the U.S. coastal housing market

is the timing of impairment from SLR. Intuitively, a property that is impacted by SLR sooner

should see a higher value impairment than a property that is affected by SLR at a later date.

Determining the timing of impairment is an important component of this research in estimating

total value at risk. Another important consideration is the discount rate used to estimate the

5These are the estimates utilized by NOAA for their local SLR projections Sweet et al. (2017).
6See supplemental material Section 6.3 for a detail description of the effect of Antarctic ice sheet melt on

housing market impairments.
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impaired value. A common method to account for value over time (i.e., time value of money)

is by using a discounted cash flow methodology. Discounted cash flow methods value an asset

based on future cash flows by discounting future cash flows by some interest rate (i.e., discount

rate) over a period of time. The value of an asset is calculated as the sum (or integral) of the

discounted values of all future cash flows. This method can be applied to value any asset with

relatively consistent cash flow streams, such as stocks, bonds, or real estate, and is also widely

used in the public policy sphere to value long-dated projects or estimate the cost of policies with

long-term social consequences (Arrow et al., 2013a). We use a discounted cash flow method

to account for the value at risk for a property with respect to when a property is potentially

inundated by SLR.7

A noteworthy assumption for a discounted value methodology is the choice of a discount

rate, as the discount rate has a significant effect on estimates of impaired value over time

(Arrow et al., 2013a,b).8 Despite the importance of the discount rate to long-term valuation,

estimating or agreeing upon discount rates that are “socially responsible” over generational

time is challenging and open for debate (Arrow et al., 2013b). Estimating the correct long-term

interest rate is beyond the scope of this paper. For our baseline value impairment estimates, we

use a discount rate of 0 percent, which allows us to easily communicate results in an intuitive

way. Our impairment estimates are simply the current estimated property values and values are

held constant over time. Additionally, a 0 percent discount rate is within the range (albeit at

the lower end) of rates used by other researchers and is consistent with current conditions where

risk free interest rates remain near zero throughout most of the developed world (Drupp et al.,

2018). Policymakers and local governments, who might be interested in provisioning for SLR

7Conceptually, this type of valuation methodology accounts for the “time value of money” by acknowledging
that individuals place a lower value on the future than on the present period (Samuelson, 1937). The discounted
cash flow technique for valuing companies dates back to the early 1700’s (Brackenborough et al., 2001) and gained
popularity as a common valuation approach in the 1900’s. Refer to the supplemental material section 6.2 for a
detailed description of our discounted cash flow methodology based on the Gordon (1963) model, a discussion of
cash flow impairment, and analysis of interest rate sensitivity.

8The higher the discount, the less value you place on future cash flow streams, and vis-a-versa. When thinking
about impairment from SLR over time, the higher the discount rate, the lower the impairment value.
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risks over time, may want to use a different (positive discount rate) for their long-term planning

purposes.9

In addition to the discount rate assumption, our housing market impairment analysis makes

a series of simplifying assumptions: First, we assume that once a property is inundated by

SLR, the value of the property falls to zero, which is an assumption in line with previous

research (Bernstein et al., 2019). In reality, additional flood risks from nuisance flooding or

enhanced storm surge would also erode economic value well before terminal impairment from SLR

inundation (Amante, 2019; Ghanbari et al., 2019; Beltrán et al., 2019). Second, our approach

assumes no foresight on the part of homeowners, who would likely begin to discount property

values well before terminal impairment or might take steps to protect their properties (e.g., by

erecting protective flood walls). This either carries forward the value impairment or burdens the

homeowner with onerous mitigation costs, both of which would reduce the home’s value earlier

than our estimates. From this perspective our estimates for value at risk fall on the conservative

side, as we are not accounting for these additional risk factors or costs. Third, we assume that

coastal markets have yet to incorporate all the risks associated with SLR into the valuation

of coastal housing properties.10 Lastly, our analysis treats the housing market as static, as

we implicitly assume no population growth (or migration), no housing market growth, and no

housing price appreciation. We contribute to the literature by providing a range of impairment

estimates for coastal housing markets and importantly the timing of when that impairment

may occur. Ultimately this simple approach allows us to estimate when properties will become

9Our 0 percent discount rate is the real rate of interest, which means that we assume that cash flows grow at
the same rate as inflation – the growth in nominal cash flows cancels out with the inflation rate, leaving the real
rate of interest or “discount rate” in our case. There is a wide array of discount rates used in the social science
and public policy spheres ranging from slightly negative to 20 percent (Drupp et al., 2018). Other commonly
used discount rates used for long-term housing cash flows fall in the low single digits (Giglio et al., 2014, 2015;
Bernstein et al., 2019). For example, 4 percent is commonly used for carbon accounting (Nordhaus, 2013) and
the Office of Management and Budget’s upper range for the “social rate of time preference” extends up to 7
percent (OMB, 2003). Although we simply use a 0 percent discount rate in our baseline analysis, we provide an
interest rate sensitivity analysis in the supplemental material section 6.2.

10Though some recent evidence suggests that property owners and investors are starting to account for these
risks (Beltrán et al., 2019; Mcalpine and Porter, 2018), other evidence indicates that homeowners are not currently
accounting for all risks of SLR and coastal inundation (Palm and Bolsen, 2020).
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inundated, providing an estimate of direct economic loss from SLR over time.

2.2 Housing Market Data

We use CoreLogic housing information from their Deeds, Tax, and Tax History data sets to

generate our housing market sample. Our housing market for the U.S. spans roughly 5.4 million

unique residences across 15 major coastal metros. We use precise geo-location information

(latitude and longitude) available in the housing data set to determine the respective elevation

above sea-level for each property and to estimate the timing at which the property may be

affected by local SLR. For each metro, we use the U.S. Postal Services’ city and ZIP code data

to filter the CoreLogic housing data to include only ZIP codes within the metropolitan areas

(USPS, 2020). Our housing market sample is restricted to single-family houses, townhomes,

and 2-4 unit residential buildings.11 Finally, our housing data set includes historical pricing

information – sales price, market value, and assessed value. We index the most recent property

value available in our data set to the current time period (2020) using CoreLogic ZIP code and

county-level combined single-family housing price indexes. Adjusting values to the current year

gives us an estimate of the current value of each property and the total estimated value of the

housing stock within each of the 15 metros.

2.3 Local Topography, Geospatial Data, and Matching Methodology

2.3.1 Local Topography

The local topography has a large effect on the modeling of future coastal inundation from

SLR and the impairment of individual housing markets. Much of the Atlantic and Gulf Coasts

of the U.S. consist of low-lying areas with small terrain slope, which results in wide swaths of

potentially flooded areas and impaired housing markets. Conversely, the Pacific Coast of the

11We exclude properties with a value estimate of less than $10K and trimmed the housing sample within each
metro, removing any properties in the upper 0.00001 percentile of the value distribution.
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U.S. has many elevated areas with large terrain slope adjacent to the coastline, resulting in

narrower swaths of land prone to SLR inundation and future impaired housing markets. DEMs

depict the local topographies and are essential to modeling coastal flood risk and the future

impairment of housing markets.

Accurate, high-resolution DEMs are needed to both delineate areas with low elevations below

a projected sea-level and to determine hydrologic connectivity. Natural terrain features (e.g.,

gullies, hills) and man-made terrain features (e.g., culverts, levees) can enhance or impede the

flow of water and affect flooding at inland elevations (Li et al., 2009; Poulter and Halpin, 2008;

Gesch, 2009; Zhang et al., 2013; Amante, 2019). The spatial resolution of the DEM is an

important factor in coastal flood modeling, as it determines the ability to resolve these terrain

features (e.g., gullies, hills, culverts, and levees) that can affect hydrologic connectivity. This

ability is especially important for modeling the future housing impairment for coastal regions

with low-lying areas protected by terrain features at present-day sea-levels. For example, the

DEMs for NYC and Miami have spatial resolutions of 3m and 5m, respectively. These spatial

resolutions are assumed to be able to resolve the most important terrain features that could

enhance or impede water flow, but the effect of the DEM spatial resolution is not rigorously

quantified in our analysis.

Furthermore, potential differences between DEM values and the “true” elevation represents

the DEM uncertainty, and such uncertainty can cause differences in the modeled coastal flood

risk (Amante, 2018, 2019) and, subsequently, in housing impairment estimates. There are many

sources of DEM uncertainty, including the spatial resolution, interpolation method, and elevation

measurement uncertainty (Amante and Eakins, 2016; Amante, 2018). The vertical uncertainty of

topographic elevation measurements using modern light detection and ranging (lidar) technology

is generally on the order of 10-20 cm at one standard deviation (Amante, 2018, 2019). This study

does not incorporate DEM uncertainty into the analysis. Modeling a single SLR projection at
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yearly time steps generally results in the SLR increment to be smaller than the DEM uncertainty,

and can lead to questionable results (Gesch, 2018). However, the uncertainty in topographic

DEMs derived from lidar measurements is much smaller than the uncertainty in SLR projections

due to different RCP scenarios, and the full SLR probability distributions within a given RCP

scenario provided by Kopp et al. (2014, 2017). Previous research indicates that the DEM

uncertainty has a much smaller effect on the modeled area prone to coastal flooding than the

uncertainty in SLR projections, especially in more distant decades (Amante, 2019).

2.3.2 Geospatial Data and Matching Methodology

We use geospatial data from NOAA’s Sea Level Rise Viewer (NOAAd, 2019), which captures

local topographic features, in order to estimate the timing of inundation and associated housing

market impairment for the 15 metros. We use NOAA’s Sea Level Rise Viewer DEMs to determine

each property’s respective elevation above sea-level at approximately high tide. Specifically,

the DEMs indicate the relative elevations above the tidal datum of Mean Higher High Water

(MHHW), which is the average of the higher high water height of each tidal day observed over

the National Tidal Datum Epoch. We also use NOAA’s Sea Level Rise Viewer inundation

shapefiles, which delineate areas that will be inundated at one-foot increments of SLR above

MHHW (0-10ft). These shapefiles were generated from NOAA’s Sea Level Rise Viewer DEMs

(NOAAd, 2019), and provide validation that a property is inundated at its respective elevation

above sea-level by accounting for hydrologic connectivity. Depending on the local topography

and built-environment, some low-lying areas along the coast may be protected by natural levies

or structures and might not be inundated (i.e., not hydrologically connected) until sea-level rises

well above their actual measured elevation (Poppenga and Worstell, 2015). For this reason, it

is important to account for hydrologic connectivity when estimating the inundation height and

associated timing of impairment for a property.

We use both the property elevations from the DEMs and the one-foot increment shapefiles to
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refine our estimates of the timing of inundation for each property.12 The NOAA Sea Level Rise

Viewer shapefiles consider both the elevation and hydrologic connectivity when delineating areas

prone to SLR inundation at 1ft intervals. However, additional temporal granularity is needed

to refine estimates of the year of inundation for each property. This is especially true with the

10th percentile of SLR projections associated with RCP 2.6. For example, in the city of Miami,

it takes approximately 100 years for local sea-level to rise 1ft at the 10th percentile projection

associated with RCP 2.6. The many years between one-foot intervals of SLR provides coarse

estimates of the timing of housing market impairment. Accordingly, we use both the property

elevation from the DEM and the location of the property within the NOAA Sea Level Rise

Viewer shapefiles that considers hydrologic connectivity to estimate the timing of inundation.

See section 6.1 in the supplemental material for more details on our method of using both the

NOAA Sea Level Rise Viewer DEMs and shapefiles to refine the estimates of housing market

impairment.13

2.4 Local Sea-Level Projections and Data

2.4.1 Local Sea-Level Projections

Coastal flooding occurs at the land-water interface, and, therefore, local information on the

relative vertical movement between the land and water surface is required to model future flood

risk and associated housing market impairment. Local sea-level projections account for both

potential vertical movement in the land topography and changes in water levels. Local land

topography can uplift or subside due to both long and short-term local or regional processes

that include loss of glacial ice (glacial isostatic adjustment), human extraction of ground water,

12We convert all DEMs from the original vertical datum of the North American Vertical Datum of 1988
(NAVD88) and vertical units of meters to the same vertical datum (MHHW) and vertical units (feet) as the Sea
Level Rise Viewer inundation shapefiles using NOAA’s VDatum conversion tool (NOAAe, 2019).

13Any property that has a negative DEM elevation is excluded from the sample, as this implies the property
may already be inundated at high tide. This rare occurrence of a negative DEM elevation could be due to
conversion of the DEM vertical datum from NAVD88 to MHHW or an inaccurate spatial reference on the
property. We exclude roughly 3300 properties (0.06% of the property sample) in this fashion.
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and tectonic processes (Horton et al., 2015; Church, 2013). Changes in local water levels can

also deviate from the global mean due to differences in ocean temperature, salinity, and currents

(Nerem and Mitchum, 2001; Cazenave and Nerem, 2004; Lombard et al., 2005; Milne et al.,

2009). Additional regular fluctuations of the climate system known as oscillations or “modes”,

can also affect local sea-levels. For example, the local sea-level in NYC is affected by climate

modes such as the North Atlantic Oscillation (Barnston and Livezey, 1987; Hurrell, 1995; Han

et al., 2017) and the Atlantic Multidecadal Oscillation (Trenberth and Shea, 2006; Wang and

Zhang, 2013; Han et al., 2017). Additional research is needed to understand how these climate

modes can affect regional and local sea-level projections (Han et al., 2017). These regional and

local factors that affect the relative vertical movement between the land and water surfaces

necessitate using local SLR projections to accurately model future coastal flooding from SLR

and associated individual housing market impairments.

2.4.2 Local Sea-Level Rise Data

We use local sea-level projections for Permanent Service for Mean Sea-Level (PSMSL) tidal

stations from Kopp et al. (2014, 2017) to estimate a range of future housing value impairments.

Our analysis uses SLR projections from 2020-2100 for three different climate scenarios (i.e., RCP

2.6, 4.5. and 8.5) and includes the SLR uncertainty around each of the RCP scenarios (0.10,

0.25, 0.50, 0.75, and 0.90 percentiles). These SLR projections account for the wide-range of

climate and sea-level uncertainty, allowing for an analysis of SLR housing impairment at the

local level, while remaining climate scenario agnostic.14 We determine the local SLR projections

based on the nearest PSMSL tidal station to the centroid of the ZIP code shapefile. These

local SLR projections then determine the potential year of inundation and impairment value for

properties in a given ZIP code. Finally, we aggregate the housing market impairment estimates

14The local SLR projections in Kopp et al. (2014) may underestimate SLR as they do not include feedback
loops in Antarctic ice sheet melt included in Deconto and Pollard (2016). We provide an aggregated impairment
analysis for the 15 metros under Deconto and Pollard (2016) in the supplemental material section 6.3 of this
paper.
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to both the individual metro level and across all 15 U.S. metros for each RCP scenario.

3 Results

Our results provide a range of housing market value impairment estimates for 15 major

U.S. coastal metros and the associated timing of those impairments. We provide an aggregated

estimate of the range of housing market value impairment for the U.S. coastal region based on

our sample of 15 major coastal cities. We also highlight the results of two select cities with

different terrain and housing characteristics (NYC and Miami). Specific impairment analyses

for the remaining metros are provided in the supplemental material.

3.1 15 U.S. Metro Total

Our aggregated results for the U.S. coastal region comprise 15 major coastal metros (including

NYC and Miami).15 These results incorporate local geographic and housing market factors,

which contribute to unique impairment profiles within the individual cities. Our aggregated

sample (i.e., all 15 metros) for the U.S. has roughly 5.4 million housing units and our compiled

national results have a smoother impairment profile than the individual cities. Additionally, our

analysis focuses on larger at risk metros, which provide a crude estimate for U.S. housing market

value at risk from SLR through 2100 (see figure 1, tile a-d).

We estimate that within these 15 major U.S. coastal cities, 8,900 (range 2,000 to 27,700),

12,200 (range 3,200 to 38,700), 22,000 (range 6,700 to 77,200) properties will be inundated

by 2100 at the 50th percentile under RCP 2.6, 4.5, and 8.5, respectively, which equates to 0.2%

(range 0.04-0.5%), 0.2% (range 0.06-0.7%), and 0.4% (range 0.1-1.4%) of our 5.4 million property

15The 15 metros in this analysis are: NYC, Washington D.C. area (i.e., Washington D.C., Alexandria, Arling-
ton, Bethesda, Chevy Chase, Hyattsville, Silver Spring, etc...), Norfolk (i.e., Norfolk, Portsmouth, and Virginia
Beach), Wilmington, Charleston, Jacksonville, Fort Lauderdale, Miami (i.e., Miami and Miami Beach), Mo-
bile, Galveston, Houston (i.e., Houston, Pasadena, La Porte, and Galena Park) San Diego, Los Angeles (i.e.,
Los Angeles and Long Beach), San Francisco Bay Area (i.e., San Francisco, San Jose, Oakland, Fremont, Hay-
ward, Sunnyvale, Santa Clara, Berkeley, Daly City, Alameda etc...), and Seattle. See supplemental material for
summary statistics and detailed impairment results on each individual metro.
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sample (figure 1, tile c). For those properties that are identified as impaired (inundated) by 2100,

the average year of impairment is 2072 (standard deviation 18 years), 2074 (standard deviation

18 years), and 2077 (standard deviation 17 years) under RCP 2.6, 4.5, and 8.5, respectively.

Measuring housing market value at risk for our 15 city sample through 2100, we estimate

that $5.0 billion (range $0.9 to $17.3 bil), $7.0 billion (range $1.5 to $25.0 bil), and $13.7 billion

(range $3.8 to $50.6 bil) of total housing value is at risk under the low (RCP 2.6), medium (RCP

4.5), and high (RCP 8.5) GHG concentration scenarios, respectively. Under these scenarios,

this equates to 0.2% (range 0.03-0.6%), 0.2% (range 0.05-0.8%), and 0.4% (0.1-1.61%) of our

estimated $3.1 trillion housing market (see tile b and d).
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Figure 1: 15 Metro Summary

Across our 15 metro sample, we determine that the Galveston, TX, Charleston, SC, and Nor-

folk, VA have the largest percent impairment values for RCP scenarios 2.6, 4.5, and 8.5, respec-
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tively. Washington D.C., Seattle, WA, and Houston, TX have the smallest percent impairment

values for RCP scenarios 2.6, 4.5, and 8.5, respectively. The “Metro Summary Statistics and

Results” table (see supplemental material) provides a detailed summary of impairment counts

and values through 2100 across the 15 metros for local SLR projections associated with the 50th

percentiles of RCP scenarios 2.6, 4.5, and 8.5.

3.2 New York City

NYC is the most populous city in the U.S. and is expected to experience local SLR that

exceeds the global average due to global, regional, and local processes (Amante, 2019; Kopp

et al., 2017). Figure 2 (tile a) shows a map of greater NYC and the land area that falls within

1.8m (6ft) of local SLR. SLR projections for each climate scenario (RCP 2.6, 4.5, and 8.6) and

their respective uncertainty bands between 10th and 90th percentiles are outlined in figure 2 (tile

b). Local sea-level is expected to increase by 0.60m, 0.73m, and 0.94m through 2100 under

the low (RCP 2.6), medium (RCP 4.5), and high (RCP 8.6) GHG concentration scenarios (50th

percentile), respectively (Kopp et al., 2017). Our housing sample for NYC has roughly 659,000

unique single-family houses compared with an estimated population of approximately 8.4 million

people (Census, 2020). Due to a relatively low concentration of single-family houses in the metro,

a positively sloping topographic gradient, and few homes in areas at risk of SLR (directly on the

coast with low elevation), we find limited risk to NYC ’s single family housing market through

2100 (see discussion section for a more detailed description of local factors contributing to these

impairments).

We estimate that 256 (range 16 to 1,645), 496 (range 47 to 2,833), and 1,223 (range 132 to

7,405) properties will be inundated by 2100 in NYC at the 50th percentile of RCP 2.6, 4.5, and

8.5, respectively. This equates to 0.04% (range 0.0-0.3%), 0.08% (range 0.01-0.4%), and 0.2%

(0.02-1.1%) of our 659,000 property sample under those scenarios (tile e). For the properties
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Figure 2: New York
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a) Map of NYC and 1.8m (6ft) inundation area; b) SLR Path and 10-90th uncertainty band for
representative concentration pathways RCP 2.6 (green), 4.5 (blue), and 8.5 (red); c) Inundation path
and uncertainty bands for impaired property counts (left vertical axis) and percent of housing market
(right vertical axis) for RCP 2.6, 4.5, and 8.5; d) Inundation path and uncertainty bands for total
value at risk using discount rate 2.6% (left vertical axis) and percent of housing market value (right
vertical axis) for RCP 2.6, 4.5, and 8.5; e)Box and whisker plot for impaired property counts through
2100 (left vertical axis) and share of housing market (right vertical axis) for RCP 2.6, 4.5, and 8.5 -
lower whisker 10th percentile, lower box 25th percentile, center line median, upper box 75th percentile,
and upper whisker 90th percentile; f)Box and whisker plot for total value at risk through 2100 using
discount rate 2.6% (left vertical axis) and percent of housing market value (right vertical axis) for
RCP 2.6, 4.5, and 8.5 – lower whisker 10th percentile, lower box 25th percentile, center line median,
upper box 75th percentile, and upper whisker 90th percentile. K26, K45, and K85 refer to results
associated with RCP2.6, RCP4.5, and RCP 8.5 from (Kopp et al., 2014, 2017).

that are identified as impaired (inundated) by 2100, the average year of impairment is 2073

(standard deviation 18 years), 2077 (standard deviation 16 years), and 2082 (standard deviation

14 years) under RCP 2.6, 4.5, and 8.5, respectively.

Measuring housing market value at risk for NYC through 2100, we estimate that $0.09 billion

(range $0.01 to $0.6 bil), $0.2 billion (range $0.01 to $1.2 bil), and $0.5 billion (range $0.04 to

$3.7 bil)) of total housing value is at risk under the low (RCP 2.6), medium (RCP 4.5), and

high (RCP 8.5) GHG concentration scenarios, respectively. Under these scenarios, this equates

to 0.02% (range 0-0.12%), 0.03% (range 0-0.2%), and 0.09% (range 0.01-0.7%) of our estimated

$537 billion NYC housing market (see tile d and f).

3.3 Miami and Miami Beach

Miami and Miami Beach (combined as “Miami”) is also expected to experience local SLR

rates that exceed the global average (Kopp et al., 2017). The image in figure 3 (tile a) shows

a map of greater Miami area and the land area that falls within 1.8m (6ft) of local SLR. The

results indicate that Miami’s land area is more at risk of SLR inundation than NYC. In the

same manner as the results presented in section 3.2 (NYC), SLR projections for each climate

scenario (RCP 2.6, 4.5, and 8.6) and their respective uncertainty bands are outlined in figure

3 (tile b). Local SLR is expected to increase by 0.55m, 0.68m, and 0.84m through 2100 in

Miami at the 50th percentile under the low (RCP 2.6), medium (RCP 4.5), and high (RCP
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8.6) GHG concentration scenarios, respectively (Kopp et al., 2017). Our housing sample for

Miami has roughly 331,000 unique single-family homes compared with an estimated population

of approximately 563,000 (Census, 2020). Miami has a relatively high concentration of single-

family houses, flat topography with numerous low-lying areas, and a concentration of homes in

areas prone to SLR inundation (on the coast at lower elevations). We find substantial risk to

Miami’s housing market through 2100 (see discussion section for a more detailed description of

local factors contributing to these impairments).

We estimate that 199 (range 11 to 3,377), 588 (range 20 to 5,857), and 2,584 (range 107 to

12,984) properties will be inundated by 2100 in Miami at the 50th percentile under RCP 2.6,

4.5, and 8.5, respectively. This equates to 0.06% (range 0-1.0%), 0.2% (range 0.1-1.8%), and

0.8% (range 0.03-3.9%) of our 331,000 property sample under those scenarios (tile e). For the

properties that are identified as impaired (inundated) by 2100, the average year of impairment

is 2082 (standard deviation 15 years), 2087 (standard deviation 13 years), and 2088 (standard

deviation 10 years) under RCP 2.6, 4.5, and 8.5, respectively.

Measuring housing market value at risk for Miami through 2100, we estimate that $0.3 billion

(range $0.02 to $3.5 bil), $0.7 billion (range $0.04 to $5.9 bil), and $2.7 billion (range $0.2 to

$13.2 bil) of total housing value is at risk under the low (RCP 2.6), medium (RCP 4.5), and

high (RCP 8.5) GHG concentration scenarios, respectively. Under these scenarios, this equates

to 0.2% (range 0.02-2.7%), 0.5% (range 0.03-4.5%), and 2.1% (range 0.1-10%) of our estimated

$131 billion Miami housing market (see tile d and f).
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Figure 3: Miami
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4 Discussion

Overall, our estimates for the direct economic costs from SLR across the 15 metro U.S.

sample represent a relatively small direct economic effect to coastal single family home markets

through the end of the century. Median total impairments through 2100 range between a 9,000 to

22,000 properties, $5.0 billion to $13.7 billion (RCP 2.6 to 8.5), or between 0.2% and 0.4% of our

sample for both counts and value. Numerous factors contribute to our conservative lower-bound

estimates for SLR impairments. We restrict our housing sample to single family, townhouses,

and buildings with 4 or less units. Roughly 25% of residences in the U.S. are condominiums

or multifamily with greater than 4 units. In some states, such as New York and Florida, the

proportion of residences that are condominiums or multifamily is approximately 35% (Census,

2011).16 Additionally, our analysis focuses on local SLR projections based on Kopp et al. (2014,

2017), which may underestimate other global risk factors such as accelerated Antarctic ice sheet

melt (Deconto and Pollard, 2016; Kopp et al., 2017). See supplemental material section 6.3 for a

sensitivity analysis of our 15 metro totals for Deconto and Pollard (2016) SLR risk compared to

Kopp et al. (2014). Lastly, our analysis focuses solely on the direct economic cost from terminal

impairment from local SLR, which is just one component of total costs from rising seas. Increases

in nuisance flooding and storm surge inundation enhanced from SLR, as well as changing risk

perceptions, would add additional costs associated with rising seas (Amante, 2019; Bernstein

et al., 2019).

Despite the conservative nature of our SLR impairment estimates, our analysis provides

useful insights on SLR impairment risk across the U.S. These insights include understanding

differences across metros and how housing density may affect impairment at the local level.

Furthermore, we generate an understanding of risk asymmetry across climate change scenarios.

16We exclude apartments, multifamily, and condominiums from our sample as these types of residential prop-
erties are more similar to commercial properties and are different markets than single family and townhouses.
Additionally, due to size (multi-story or larger complexes) and construction in these of these types of residential
building, SLR inundation may affect these properties differently. Investment for mitigation may also be applied
to these types of properties in a different way than for single family homes.
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Lastly, we provide estimates for the timing of SLR impairment, which may prove useful for city

planners and governments.

4.1 Housing Markets and Population

Our analysis indicates that proximity of low-lying areas to the coast, the structure of coastal

housing markets, and the locations of single-family houses all contribute to housing market

impairment within a city. Proximity to the coast has generally been considered a positive

amenity that typically drives up home prices (Benson et al., 1998). However, as expected, the

proximity of single-family houses to the coast, especially in low-lying areas along the Atlantic and

Gulf Coasts, makes houses more prone to SLR inundation. For example, in our Miami housing

sample, 6,100 houses (1.9% of our Miami housing sample) reside within 1m of the current sea-

level. In contrast, only 1,800 houses in NYC (0.3% of our NYC housing sample) reside within

1m of current sea-level. The Miami metro has a much greater concentration of properties in

close proximity to low-lying areas near the coast compared to NYC, which would make those

properties in Miami more subject to SLR inundation. This is precisely what we observe in our

results for NYC and Miami (i.e., greater relative housing market impairment from SLR in Miami

compared to NYC). Unsurprisingly, the closer a city’s real estate is to sea-level, the more subject

that housing market is to potential impairment from SLR inundation.

Another feature of a coastal metro that affects housing market impairments from SLR inun-

dation is the concentration of single-family houses. Some larger, more densely populated cities,

such as NYC, have a much smaller share of their population living in single-family houses than

in less dense cities, such as Miami or Houston. NYC has an estimated population of 8.4 mil-

lion with 3.2 million households (Census, 2020). Our housing sample for NYC contains roughly

659,000 single family homes. In contrast, Miami’s estimated population is 563,000 people, with

215,000 households (Census, 2020). Our housing sample for the Miami area contains roughly
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331,000 single family homes. Miami has a much higher concentration of single-family houses

per capita (1.5 houses/household) than NYC (0.2 houses/household), as more people in NYC

are living in commercial apartment buildings or condos (which are excluded from our housing

sample). Thus, coastal metros with a greater concentration of single-family houses are more

prone to housing market impairment in our analysis.

4.2 Uncertainty and Risk Asymmetry

Two consistent features within our results, both at the metro and national level, are large

uncertainties in housing market impairment and asymmetry of impairment risk. First, our results

consistently suggest a large impairment uncertainty within each GHG concentration scenario,

such that uncertainty within each GHG scenario is larger on average than the uncertainty we

find between each of the GHG scenarios (see figures 2 and 3, tile f). Using Miami’s high GHG

scenario (RCP 8.5) as an example, the range of impairment risk (90th - 10th) is $13 billion (9.9%

of total market value). The range of impairment risk is $2.4 billion (1.8% of total market value)

between GHG concentration scenarios (RCP 2.6 to RCP 8.5 at the 50th percentile), which is a

much smaller range of impairment uncertainty than within the individual GHG scenario RCP

8.5 itself. This speaks to the critical importance of including SLR uncertainty distributions

when estimating value impairments within a given RCP scenario. By excluding the complete

probability distributions of local SLR projections associated with each RCP scenario, any value

impairment analysis would overlook a highly important source of uncertainty.

Second, our results indicate consistent asymmetric risk to the upside (positive skewness)

across the three GHG concentration scenarios (RCP 2.6, 4.5, and 8.5). The upper portion of the

box (50th to 75th percentile) is larger than the lower portion of the box (25th to 50th percentile).

Additionally, the upper tails (to the 90th percentile) are longer than the lower-tails (to the

10th percentile) (see figures 1, tiles c and d), indicating strong positive risk asymmetry, which
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suggests more potential impairment under a given GHG scenario than the median percentiles

would indicate. Positive risk asymmetry provides some motivation for future cuts in GHG

emissions, which may temper climate risk and nudge the global climate towards lower risk GHG

concentration scenarios (Hausfather and Peters, 2020; IPCC, 2014). Future energy and carbon

policies aside, taking into consideration the positive risk asymmetry is an important factor when

assessing the overall risks coastal communities face from SLR through the end of the century.

4.3 Policy Implications, Inundation Timing, and Economic Risk

The results from our metro level analysis of SLR uncertainty and housing market impairment

risk provide a series of useful insights for governments, policymakers, financial institutions, and

those living in coastal communities. We estimate SLR impairments at the property and metro

level, producing impairments for both property counts and value at risk, which can help expose

distributional effects of SLR risk across metros. Our impairment estimate over time shed light on

when SLR inundation is likely to manifest for different cities and can serve as an approximation

of risk across the coastal U.S. (i.e., total of 15 coastal metros). Finally, our results may have

implications for public finances and mortgage markets.

Firstly, our measures of inundated property counts (figure 1, tile a and c) and value impair-

ments (figure 1, tile b and d) provide two different perspectives on risk exposures and can serve

as an indicator of the distributional effects of SLR inundation risk. Property count inundation

gives an estimate for individuals at risk (households), whereas the dollar values indicates whether

higher or lower value real estate is exposed. For example, property counts and value exposures

(as a share of metro totals) are roughly the same for NYC through 2100 (figure 2). Whereas

Miami has lower counts and higher values (as a percent of the total metro) (figure 3). This

suggests that on average Miami has relatively higher value single family homes exposed to SLR

than NYC. Exposing the distributional effects of SLR risk across housing markets (e.g., high
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value homes versus low value homes) can be useful when trying to understand who is most at

risk from SLR inundation.

Secondly, estimating the timing of housing impairment exposures from SLR at the metro level

may prove useful for city planners and local governments charged with implementing longer-term

risk mitigation strategies through physical infrastructure investment (e.g., levees, seawalls, etc.)

or some policy action (e.g., urban planning decisions or carbon policies). Both of these actions

require a comprehensive understanding and accounting of risks over time. By analyzing 15

distinct metros in the U.S., our research identifies the unique timing of risks a city may be

facing from local sea-level rise. As an illustrative example, figure 4 shows the cumulative median

housing impairment (counts and values) under the medium GHG concentration scenario (RCP

4.5) through 2100 for NYC, Miami, Galveston, and Norfolk. These cumulative distribution

functions provide an insight into when SLR risk might take place in a given metro relative

to other metros. In Norfolk, 20% of properties are inundated by 2043, compared to 20% of

properties being inundated by 2059, 2060, and 2078 in Galveston, NYC, and Miami, respectively.

Comparing Norfolk and Miami, it is evident that SLR impairment takes place much sooner in

Norfolk than Miami. The Galveston and NYC CDF curves require a more nuanced comparison.

While both metros face a similar trajectory for impairment timing (i.e., 20% of their exposed

properties become inundated by around 2060), their relative overall risk exposure is strikingly

different, with 15.6% of properties inundated in Galveston through 2100 compared to a mere

0.1% in NYC. From this perspective, our results not only provide total measures of housing at

risk from SLR at the local level, but also gives a sense of when impairments take place over the

next 80 years, across these metros. 17

The timing of SLR risk is important for city planners, as this information can help improve

decision-making regarding where and when infrastructure could be built to reduce risks from

17Galveston and Norfolk are two of the more at risk metros in our sample, facing roughly 15.6% and 0.6%,
respectively, of properties by count at risk from SLR through 2100 under the medium GHG scenario (RCP 4.5).
This is compared to 0.1% and 0.2% for NYC and Miami, respectively. See supplemental material for a detailed
description of Galveston and Norfolk results.
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SLR. By producing impairment estimates over time, we provide a conservative measure of cost

from SLR inundation that urban planners can compare to the benefits of mitigation (balancing

costs and benefits), helping them determine optimal mitigation policies for their specific metro

areas (Guthrie, 2020).18
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Figure 4: Cumulative Distribution Function (CDF) of Housing Impairment under RCP 4.5
(Kopp et al., 2014, 2017); Left side: CDF for property impairment counts; Right side: CDF for
property value impairment.

Perhaps a less obvious implication for our research is the risk to city finances or national

disaster programs from future SLR inundation. Our time series of local impairment estimates

provides a rough proxy for erosion of the tax base over time within a city. As neighborhoods

within a city face SLR inundation, out-migration may increase in the most at-risk areas. This

out-migration, may in turn, erode the tax base for a city at a time when it needs to increase

spending on infrastructure and risk mitigation. On a national scale, these same dynamics pose

potential problems for the viability of disaster relief programs. As the sea-level rises and large

areas of coastal cities are at greater risk from nuisance flooding and storm surge inundation,

the cost to national flood insurance programs, as well as disaster relief programs, may also rise.

Similar to local municipalities, higher costs may put significant strain on national flood insurance

and disaster relief programs.

18See section 2.2 and supplemental material for a more detailed description on why accurately measuring the
timing of risk is important, as well as the implications of time value of money for long-term decision making.
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Lastly, our results on housing market value at risk have links to the financial sector, bond

markets, and potentially financial regulatory agencies. In the same way that our housing im-

pairment estimates provide a proxy for the erosion of a tax base at the local level, these results

also provide insight into the risks local mortgage markets may face in the wake of SLR inun-

dation. Coincident with the housing value at risk from SLR is the potential strain that may

emerge in home mortgage markets. Roughly 70 percent of homeowners have a mortgage on their

property (Zillow, 2013), and a negative effect on housing values may cause disruptions to home

mortgage markets. Our results indicate that a majority of risk from SLR takes place toward the

end of the century, which is outside the window of a standard 30-year mortgage. However, if

these risks were embodied in housing values, this may reduce the creditworthiness of some out-

standing mortgages as the loan to value ratios might decline.19 Even if a house is not currently

prone to coastal inundation, future SLR or changes in risk perceptions may pose challenges for

selling homes or refinancing a mortgage due to concerns about the viability of that property.

These secondary and more investment focused risks may be of concern to homeowners, lenders,

and financial regulators. Quantifying these risks to the home mortgage markets and potential

spillovers into financial institutions (including insurers and re-insurers) is beyond the scope of

this project, but this is fruitful ground for additional research.

5 Conclusion

We estimate a range of housing market value impairments at the property and city level for 15

U.S. coastal metros through 2100, accounting for local topography and local SLR estimates that

incorporate several sources of uncertainty. We utilize a novel spatial matching methodology,

which allows us to estimate the timing of SLR inundation at the property level with refined

temporal granularity. These property impairment estimates are then summed to create metro

19Recent survey evidence would suggest that coastal homeowners that are most at risk are reluctant to
acknowledge the risks they face from SLR and coastal inundation (Palm and Bolsen, 2020).
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level SLR impairment estimates over time. Our median aggregate (i.e., all 15 metros) results

indicate that 9,000, 12,000, and 22,000 properties will be inundated by 2100 under the three

GHG scenarios analyzed (i.e, low RCP 2.6, medium RCP 4.5, and high RCP 8.5) which equates

to 0.2%, 0.2% and 0.4% of our 5.4 million property sample, respectively. These results indicate

that $5.0 billion, $7.0 billion and $13.7 billion or 0.2%, 0.2% and 0.4% of value under those

scenarios (RCP 2.6, 4.5, and 8.5) is at risk from SLR inundation through 2100.

With nearly 40 percent of the U.S. population living along the coast, SLR is a substantial

threat to coastal communities. Our analysis provides insight into housing market value at risk

for major coastal cities. These results provide a useful model for the timing of losses and

asymmetry of risk from SLR inundation, which can help inform policy makers, city officials,

investors, and bankers in cost-benefit decision-making related to mitigation, adaptation, and

remediation policies at the local and national level. Ultimately, our research provides a useful

measure for the direct economic costs from SLR inundation within coastal housing markets.

Quantifying the range of future housing market value impairment is a first step in mitigating

economic risks from SLR inundation. Our estimates, although only a minor portion of the total

costs associated with climate change, contribute to the proper accounting of climate-related

risks.
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6 Supplemental Material: Appendix

6.1 Combined Use of Sea Level Rise Viewer DEMs and Shapefiles

We use both the property elevation from the DEM and the location of the property within

the NOAA Sea Level Rise Viewer shapefiles that considers hydrologic connectivity to refine our

estimate of the timing of inundation and impairment. We first determine the most restrictive

coastal inundation shapefile (i.e., lowest sea-level rise increment inundation area that the prop-

erty is located within). For example, a property with an elevation from the DEM of 1.7ft may

be located within the 2ft, 3ft, 4ft, ... , 10ft Sea Level Rise Viewer shapefile. We identify the

most restrictive shapefile for this property to be the 2ft shapefile. In this case, we assume that

the there are no large terrain or man-made barriers to inundation and estimate the year of inun-

dation to be associated with the year at which the sea-level rise projection reaches the elevation

of the property from the DEM (i.e., 1.7ft).

In other cases, a property with an elevation of 1.7ft may be located in the 4ft, 5ft, 6ft,

... , 10ft Sea Level Rise Viewer shapefile. This would occur if the property is located in an

inland depression and surrounded by higher elevations from natural terrain barriers or man-

made barriers such as levees that would protect the property until sea-level rises above those

protective elevations. In such cases, we estimate the year of inundation to be associated with

the year at which the sea-level rise projection reaches the most restrictive Sea Level Rise Viewer

shapefile increment (i.e., 4ft), which gives a conservative estimate for the timing of inundation.

Considering both the DEM value and Sea Level Rise Viewer shapefiles increases the granularity of

our estimate of the inundation year associated with each sea-level rise projection where terrain or

man-made barriers that would prevent inundation are unlikely. Figure 5 illustrates the improved

precision of using both the DEM and shapefiles to determine the timing of inundation compared

to only using the shapefiles.

One potential limitation of this approach is that this improved temporal granularity can lead
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Figure 5: Combined use of Sea Level Rise Viewer DEMs and shapefiles refines impairment
estimates. Left side: Sea-level rise projection for Miami. (Deconto and Pollard, 2016) Right
side: Combined DEM and shapefile Match (Solid Lines) vs. Only shapefile Match (Dashed
Lines)

to questionable results due to the uncertainty of the DEM. For example, the SLR increment

within a year is typically on the order of millimeters, but the vertical uncertainty of the DEM is

typically on the order of centimeters. As such, the annual sea-level rise increment is within the

uncertainty of the DEM and can lead to questionable results for an individual SLR projection

(Gesch, 2018). However, previous research indicates the DEM uncertainty (on the order of

centimeters) is a much smaller contribution to the uncertainty of coastal inundation compared

to the uncertainty of SLR projections (on the order of meters), especially in distant decades

(Amante, 2019). Therefore, using this dual-approach to estimate the year of inundation is

deemed acceptable when determining a range of future coastal housing market impairment that

incorporates SLR uncertainty into the distant future (i.e., through 2100). This is because the

SLR uncertainty will be a much larger contributor to the uncertainty in the housing market

impairment than the DEM uncertainty that is not considered in this analysis.
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6.2 Discount Cash Flow Methods and Interest Rate Sensitivity

6.2.1 Discounted Cash Flow and Cash Flow Impairment

Our analytic approach uses a financial impairment methodology to estimate the value at risk

from SLR for each property. We base value and impairment estimates on the Gordon (1963)

model, which is used by other researchers to estimate SLR timing (Bernstein et al., 2019). The

Gordon model assumes that the value of property (Vi) is the sum of all future cash flows (CFi)

discounted by some discount rate (r) and that cash flows for unimpaired properties continue in

perpetuity (forever). For our purposes, we make an additional simplifying assumption that cash

flows to a property cease when it is exposed to SLR at time (T ) and the value of the property

immediately becomes worthless. For our impairment analysis, we use the following equations:

Vi =
∞∑
t=1

CFi,t

(1 + r)t
=

CFi

r

Vimpaired =
Vi

(1 + r)T
=

CFi

r

(1 + r)T

% Total Value Impaired =

Vi

(1+r)T

Vi

=
1

(1 + r)T
≈ e−(r∗T )

(1)

where:

Vi = present value; property value i

CFi = cash flow for property i

T = year of impairment; year of SLR impact

r = discount rate

By summing up impairment values for individually impaired properties and the unimpaired

values for all properties, we arrive at a total value impairment for an entire housing market (e.g.,

city, county, state, country) and the share of total value that may be at risk from SLR:
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Market Value Impaired =
n∑

i=1

Vi(e
−(r∗T ))

% Market Value Impaired =

∑n
i=1 Vi(e

−(r∗T ))∑n
i=1 Vi

(2)

6.2.2 Impairment Values and Discount Rate Sensitivity

Our baseline impairment estimates use an easy to communicate and understand 0 percent

discount rate, which means that those impairment estimates over time reflect the current es-

timated property values. However, using some other (positive) discount would result in lower

overall impairment value estimates, as future property impairments are discounted compared

to properties impaired in the near-term. The higher the discount rate, the lower the impair-

ment value. Below, we provide aggregated impairment results across the 15 metros using three

different discount rates (i.e., 0%, 2.6%, and 4%):
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Figure 6: Interest Rate Sensitivity

The median results across all GHG concentration paths for Kopp et al. (2014, 2017), using

three different discount rates, illustrate the sensitivity of impairment value estimates over time

for a chosen interest rate. As an example, the median impairment value estimate with a 0

percent discount rate through 2100 is $7.0 billion for RCP 4.5. Using the 2.6% and 4% discount

rates, this estimate drops to $1.9 billion, and $1.0 billion, respectively. As the discount rate
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rises, the value impairment declines due to the time value of money, illustrating the importance

of choosing a discount rate for this type of long-term analysis.

6.3 Deconto and Pollard (2016) Results: Antarctic Ice Sheet Physics

The main housing market impairment results in this paper use local SLR projections available

in Kopp et al. (2014, 2017) (K14). These local SLR projections are commonly used by NOAA

and other scientific agencies in their own local SLR projections (Sweet et al., 2017). The K14

results are a useful baseline for estimating local SLR and the economic consequences. However,

K14 SLR projections do not account for factors that may cause accelerated ice sheet melt such

as ice shelf hydrofracturing and ice cliff collapse. Deconto and Pollard (2016) (DP16) produce

local sea-level projections that account for both the mechanisms of ice sheet hydrofracturing

and ice-cliff collapse, which are reinforcing factors that accelerate global mean sea-level (GMSL)

rise and exacerbate risk to local coastal communities. To provide some context, the median

projected 21st century GMSL rise is expected to reach 0.59m for the medium GHG concentration

scenarios (RCP 4.5) in K14, but under DP16, GMSL is expected to rise by 0.91m. Local, relative

SLR differences can be even more pronounced. We provide a comparison of aggregated SLR

impairment results across our 15 metros between K14 and DP16 (see figure 7) to demonstrate

how accounting for additional influences, such as the rapid disintegration of ice sheets, can add

to the economic costs of SLR.
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Figure 7: Combined 15 Metro Kopp et al. (2014) and Deconto and Pollard (2016) Comparison
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The median impairment results across all GHG concentration paths for K14 compared to

DP16 demonstrate how additional feedback loops in ice sheet melt can increase SLR impairment

estimates. Using the medium GHG concentration path (RCP 4.5) as an example, the median

impaired property counts though 2100 are estimated at 12,200 in K14, but are much larger at

39,300 in DP16. The median estimated impairment value is $7.0 billion in K14 for RCP 4.5

compared to $25.7 billion under DP16. Given the accelerated path of SLR in DP16 compared

to K14, the number of properties and estimated impairment value is higher under all three of

the GHG concentration scenarios. Accounting for potentially reinforcing feedback processes in

ice sheet melt can be important when assessing the full spectrum of potential economic effects

from more extreme SLR projections.
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Cnt.
2050

Cnt.
2100

% Cnt.
2100

Bn. $
2050

Bn. $
2100

% Value
2100

Avg.
Year

Std.
Year

RCP Ptile

RCP-26 0.1 253 2016 0.04 0.11 0.91 0.03 2070 15
0.5 1367 8917 0.16 0.66 5.04 0.16 2072 18
0.9 3360 27693 0.51 1.80 17.32 0.55 2075 19

RCP-45 0.1 351 3182 0.06 0.15 1.48 0.05 2073 16
0.5 1466 12202 0.22 0.73 6.99 0.22 2074 18
0.9 3399 38720 0.71 1.88 24.97 0.80 2077 18

RCP-85 0.1 515 6737 0.12 0.22 3.82 0.12 2077 16
0.5 1785 22080 0.41 0.91 13.66 0.44 2077 17
0.9 5510 77226 1.42 3.32 50.57 1.61 2081 16

*All values in charts and table are undiscounted.

a) Inundation path and uncertainty bands for impaired property counts (left vertical axis) and percent of housing market (right

vertical axis) for RCP 2.6, 4.5, and 8.5; b) Inundation path and uncertainty bands for total value at an undiscounted rate (left

vertical axis) and percent of housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5; c)Box and whisker plot for impaired

property counts through 2100 (left vertical axis) and share of housing market (right vertical axis) for RCP 2.6, 4.5, and 8.5 - lower

whisker 10th quantile, lower box 25th quantile, center line median, upper box 75th quantile, and upper whisker 90th quantile; d)Box

and whisker plot for total value at risk through 2100 at an undiscounted rate (left vertical axis) and percent of housing market value

(right vertical axis) for RCP 2.6, 4.5, and 8.5 – lower whisker 10th quantile, lower box 25th quantile, center line median, upper box

75th quantile, and upper whisker 90th quantile. K26, K45, and K85 refer to results associated with RCP2.6, RCP4.5, and RCP 8.5

from (Kopp et al., 2014, 2017)
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(b) SLR vs Time

New York City: Sea-Level-Rise vs Time
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Cnt.
2050

Cnt.
2100

% Cnt.
2100

Bn. $
2050

Bn. $
2100

% Value
2100

Avg.
Year

Std.
Year

RCP Ptile

RCP-26 0.1 0 16 0.00 0.00 0.01 0.00 2080 13
0.5 36 256 0.04 0.01 0.09 0.02 2073 18
0.9 150 1645 0.25 0.05 0.63 0.12 2077 17

RCP-45 0.1 0 47 0.01 0.00 0.01 0.00 2077 13
0.5 37 496 0.08 0.01 0.18 0.03 2077 16
0.9 150 2883 0.44 0.05 1.19 0.22 2081 15

RCP-85 0.1 0 132 0.02 0.00 0.04 0.01 2080 13
0.5 53 1223 0.19 0.02 0.46 0.09 2082 14
0.9 201 7405 1.12 0.07 3.68 0.69 2084 13

*All values in charts and table are undiscounted.

a) Map of ZIP Code Tabulation Areas (ZCTA) included in metro and 1.8m (6ft) inundation area; b) Sea level rise Path and 10-90th

uncertainty band for greenhouse gas concentration pathways (representative concentration pathways) - RCP 2.6 (green), 4.5 (blue),

and 8.5 (red) for; c) Inundation path and uncertainty bands for impaired property counts (left vertical axis) and percent of housing

market (right vertical axis) for RCP 2.6, 4.5, and 8.5; d) Inundation path and uncertainty bands for total value at an undiscounted

rate (left vertical axis) and percent of housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5; e)Box and whisker plot

for impaired property counts through 2100 (left vertical axis) and share of housing market (right vertical axis) for RCP 2.6, 4.5,

and 8.5 - lower whisker 10th quantile, lower box 25th quantile, center line median, upper box 75th quantile, and upper whisker

90th quantile; f)Box and whisker plot for total value at risk through 2100 at an undiscounted rate (left vertical axis) and percent of

housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5 – lower whisker 10th quantile, lower box 25th quantile, center

line median, upper box 75th quantile, and upper whisker 90th quantile. K26, K45, and K85 refer to results associated with RCP2.6,

RCP4.5, and RCP 8.5 from (Kopp et al., 2014, 2017)
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Cnt.
2050

Cnt.
2100

% Cnt.
2100

Bn. $
2050

Bn. $
2100

% Value
2100

Avg.
Year

Std.
Year

RCP Ptile

RCP-26 0.1 3 11 0.00 0.01 0.02 0.02 2068 16
0.5 11 199 0.06 0.02 0.25 0.19 2082 15
0.9 30 3377 1.02 0.06 3.52 2.68 2086 11

RCP-45 0.1 1 20 0.01 0.01 0.04 0.03 2075 16
0.5 11 588 0.18 0.02 0.68 0.52 2087 13
0.9 45 5857 1.77 0.08 5.91 4.50 2086 11

RCP-85 0.1 3 107 0.03 0.01 0.17 0.13 2082 12
0.5 12 2584 0.78 0.02 2.69 2.05 2088 10
0.9 79 12984 3.93 0.13 13.15 10.01 2085 11

*All values in charts and table are undiscounted.

a) Map of ZIP Code Tabulation Areas (ZCTA) included in metro and 1.8m (6ft) inundation area; b) Sea level rise Path and 10-90th

uncertainty band for greenhouse gas concentration pathways (representative concentration pathways) - RCP 2.6 (green), 4.5 (blue),

and 8.5 (red) for; c) Inundation path and uncertainty bands for impaired property counts (left vertical axis) and percent of housing

market (right vertical axis) for RCP 2.6, 4.5, and 8.5; d) Inundation path and uncertainty bands for total value at an undiscounted

rate (left vertical axis) and percent of housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5; e)Box and whisker plot

for impaired property counts through 2100 (left vertical axis) and share of housing market (right vertical axis) for RCP 2.6, 4.5,

and 8.5 - lower whisker 10th quantile, lower box 25th quantile, center line median, upper box 75th quantile, and upper whisker

90th quantile; f)Box and whisker plot for total value at risk through 2100 at an undiscounted rate (left vertical axis) and percent of

housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5 – lower whisker 10th quantile, lower box 25th quantile, center

line median, upper box 75th quantile, and upper whisker 90th quantile. K26, K45, and K85 refer to results associated with RCP2.6,

RCP4.5, and RCP 8.5 from (Kopp et al., 2014, 2017)
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(b) SLR vs Time

DC Metro Area: Sea-Level-Rise vs Time
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DC Metro Area: Impairment vs Time
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DC Metro Area: Sea-Level-Rise Uncertainty by Representative Concentration Pathway (RCP)

RCP2.6 50%

RCP2.6 10%, 90%

RCP4.5 50%

RCP4.5 10%, 90%

RCP8.5 50%

RCP8.5 10%, 90%
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Cnt.
2050

Cnt.
2100

% Cnt.
2100

Bn. $
2050

Bn. $
2100

% Value
2100

Avg.
Year

Std.
Year

RCP Ptile

RCP-26 0.1 NaN 0 0.00 NaN 0.00 0.00 nan nan
0.5 NaN 1 0.00 NaN 0.00 0.00 2066 nan
0.9 NaN 24 0.00 NaN 0.02 0.01 2088 13

RCP-45 0.1 NaN 0 0.00 NaN 0.00 0.00 nan nan
0.5 NaN 3 0.00 NaN 0.00 0.00 2080 17
0.9 NaN 27 0.00 NaN 0.02 0.01 2082 11

RCP-85 0.1 NaN 1 0.00 NaN 0.00 0.00 2082 nan
0.5 NaN 11 0.00 NaN 0.01 0.00 2085 13
0.9 NaN 57 0.01 NaN 0.04 0.01 2084 13

*All values in charts and table are undiscounted.

a) Map of ZIP Code Tabulation Areas (ZCTA) included in metro and 1.8m (6ft) inundation area; b) Sea level rise Path and 10-90th

uncertainty band for greenhouse gas concentration pathways (representative concentration pathways) - RCP 2.6 (green), 4.5 (blue),

and 8.5 (red) for; c) Inundation path and uncertainty bands for impaired property counts (left vertical axis) and percent of housing

market (right vertical axis) for RCP 2.6, 4.5, and 8.5; d) Inundation path and uncertainty bands for total value at an undiscounted

rate (left vertical axis) and percent of housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5; e)Box and whisker plot

for impaired property counts through 2100 (left vertical axis) and share of housing market (right vertical axis) for RCP 2.6, 4.5,

and 8.5 - lower whisker 10th quantile, lower box 25th quantile, center line median, upper box 75th quantile, and upper whisker

90th quantile; f)Box and whisker plot for total value at risk through 2100 at an undiscounted rate (left vertical axis) and percent of

housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5 – lower whisker 10th quantile, lower box 25th quantile, center

line median, upper box 75th quantile, and upper whisker 90th quantile. K26, K45, and K85 refer to results associated with RCP2.6,

RCP4.5, and RCP 8.5 from (Kopp et al., 2014, 2017)
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(b) SLR vs Time

Norfolk: Sea-Level-Rise vs Time
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Norfolk: Impairment vs Time

K26 K45 K85
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Norfolk: Sea-Level-Rise Uncertainty by Representative Concentration Pathway (RCP)

RCP2.6 50%

RCP2.6 10%, 90%

RCP4.5 50%

RCP4.5 10%, 90%

RCP8.5 50%

RCP8.5 10%, 90%
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Cnt.
2050

Cnt.
2100

% Cnt.
2100

Bn. $
2050

Bn. $
2100

% Value
2100

Avg.
Year

Std.
Year

RCP Ptile

RCP-26 0.1 33 241 0.12 0.02 0.11 0.20 2068 14
0.5 219 766 0.38 0.10 0.31 0.56 2067 22
0.9 404 2446 1.21 0.18 0.95 1.71 2073 21

RCP-45 0.1 51 359 0.18 0.03 0.16 0.30 2069 17
0.5 234 1082 0.53 0.11 0.43 0.78 2071 20
0.9 424 3595 1.77 0.19 1.35 2.44 2075 19

RCP-85 0.1 77 489 0.24 0.04 0.22 0.40 2068 16
0.5 268 1958 0.97 0.13 0.76 1.37 2076 19
0.9 460 6212 3.07 0.21 2.37 4.27 2079 17

*All values in charts and table are undiscounted.

a) Map of ZIP Code Tabulation Areas (ZCTA) included in metro and 1.8m (6ft) inundation area; b) Sea level rise Path and 10-90th

uncertainty band for greenhouse gas concentration pathways (representative concentration pathways) - RCP 2.6 (green), 4.5 (blue),

and 8.5 (red) for; c) Inundation path and uncertainty bands for impaired property counts (left vertical axis) and percent of housing

market (right vertical axis) for RCP 2.6, 4.5, and 8.5; d) Inundation path and uncertainty bands for total value at an undiscounted

rate (left vertical axis) and percent of housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5; e)Box and whisker plot

for impaired property counts through 2100 (left vertical axis) and share of housing market (right vertical axis) for RCP 2.6, 4.5,

and 8.5 - lower whisker 10th quantile, lower box 25th quantile, center line median, upper box 75th quantile, and upper whisker

90th quantile; f)Box and whisker plot for total value at risk through 2100 at an undiscounted rate (left vertical axis) and percent of

housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5 – lower whisker 10th quantile, lower box 25th quantile, center

line median, upper box 75th quantile, and upper whisker 90th quantile. K26, K45, and K85 refer to results associated with RCP2.6,

RCP4.5, and RCP 8.5 from (Kopp et al., 2014, 2017)
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(b) SLR vs Time

Wilmington: Sea-Level-Rise vs Time
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Wilmington: Impairment vs Time

K26 K45 K85
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Wilmington: Sea-Level-Rise Uncertainty by Representative Concentration Pathway (RCP)

RCP2.6 50%

RCP2.6 10%, 90%

RCP4.5 50%

RCP4.5 10%, 90%

RCP8.5 50%

RCP8.5 10%, 90%
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Cnt.
2050

Cnt.
2100

% Cnt.
2100

Bn. $
2050

Bn. $
2100

% Value
2100

Avg.
Year

Std.
Year

RCP Ptile

RCP-26 0.1 0 25 0.04 0.00 0.02 0.12 2068 11
0.5 34 145 0.21 0.03 0.10 0.51 2069 20
0.9 75 429 0.64 0.06 0.30 1.47 2070 21

RCP-45 0.1 5 48 0.07 0.01 0.04 0.20 2071 16
0.5 35 205 0.30 0.03 0.15 0.73 2070 19
0.9 81 612 0.91 0.07 0.44 2.12 2075 21

RCP-85 0.1 11 81 0.12 0.01 0.07 0.32 2070 16
0.5 46 327 0.48 0.04 0.24 1.15 2073 19
0.9 118 1422 2.10 0.09 1.10 5.33 2082 18

*All values in charts and table are undiscounted.

a) Map of ZIP Code Tabulation Areas (ZCTA) included in metro and 1.8m (6ft) inundation area; b) Sea level rise Path and 10-90th

uncertainty band for greenhouse gas concentration pathways (representative concentration pathways) - RCP 2.6 (green), 4.5 (blue),

and 8.5 (red) for; c) Inundation path and uncertainty bands for impaired property counts (left vertical axis) and percent of housing

market (right vertical axis) for RCP 2.6, 4.5, and 8.5; d) Inundation path and uncertainty bands for total value at an undiscounted

rate (left vertical axis) and percent of housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5; e)Box and whisker plot

for impaired property counts through 2100 (left vertical axis) and share of housing market (right vertical axis) for RCP 2.6, 4.5,

and 8.5 - lower whisker 10th quantile, lower box 25th quantile, center line median, upper box 75th quantile, and upper whisker

90th quantile; f)Box and whisker plot for total value at risk through 2100 at an undiscounted rate (left vertical axis) and percent of

housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5 – lower whisker 10th quantile, lower box 25th quantile, center

line median, upper box 75th quantile, and upper whisker 90th quantile. K26, K45, and K85 refer to results associated with RCP2.6,

RCP4.5, and RCP 8.5 from (Kopp et al., 2014, 2017)
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(b) SLR vs Time

Charleston: Sea-Level-Rise vs Time
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Charleston: Impairment vs Time

K26 K45 K85
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Charleston: Sea-Level-Rise Uncertainty by Representative Concentration Pathway (RCP)

RCP2.6 50%

RCP2.6 10%, 90%

RCP4.5 50%

RCP4.5 10%, 90%

RCP8.5 50%

RCP8.5 10%, 90%
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Cnt.
2050

Cnt.
2100

% Cnt.
2100

Bn. $
2050

Bn. $
2100

% Value
2100

Avg.
Year

Std.
Year

RCP Ptile

RCP-26 0.1 8 99 0.09 0.01 0.09 0.20 2075 16
0.5 83 848 0.75 0.07 0.73 1.62 2074 17
0.9 289 4021 3.54 0.27 2.99 6.64 2079 17

RCP-45 0.1 14 247 0.22 0.01 0.23 0.52 2078 14
0.5 99 1467 1.29 0.09 1.18 2.62 2079 16
0.9 343 5563 4.90 0.31 4.01 8.90 2080 16

RCP-85 0.1 24 486 0.43 0.02 0.42 0.93 2075 13
0.5 148 2810 2.48 0.14 2.16 4.80 2080 15
0.9 418 10121 8.92 0.37 7.10 15.75 2082 15

*All values in charts and table are undiscounted.

a) Map of ZIP Code Tabulation Areas (ZCTA) included in metro and 1.8m (6ft) inundation area; b) Sea level rise Path and 10-90th

uncertainty band for greenhouse gas concentration pathways (representative concentration pathways) - RCP 2.6 (green), 4.5 (blue),

and 8.5 (red) for; c) Inundation path and uncertainty bands for impaired property counts (left vertical axis) and percent of housing

market (right vertical axis) for RCP 2.6, 4.5, and 8.5; d) Inundation path and uncertainty bands for total value at an undiscounted

rate (left vertical axis) and percent of housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5; e)Box and whisker plot

for impaired property counts through 2100 (left vertical axis) and share of housing market (right vertical axis) for RCP 2.6, 4.5,

and 8.5 - lower whisker 10th quantile, lower box 25th quantile, center line median, upper box 75th quantile, and upper whisker

90th quantile; f)Box and whisker plot for total value at risk through 2100 at an undiscounted rate (left vertical axis) and percent of

housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5 – lower whisker 10th quantile, lower box 25th quantile, center

line median, upper box 75th quantile, and upper whisker 90th quantile. K26, K45, and K85 refer to results associated with RCP2.6,

RCP4.5, and RCP 8.5 from (Kopp et al., 2014, 2017)
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(b) SLR vs Time

Jacksonville: Sea-Level-Rise vs Time
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Jacksonville: Impairment vs Time

K26 K45 K85
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Jacksonville: Sea-Level-Rise Uncertainty by Representative Concentration Pathway (RCP)

RCP2.6 50%

RCP2.6 10%, 90%

RCP4.5 50%

RCP4.5 10%, 90%

RCP8.5 50%

RCP8.5 10%, 90%
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Cnt.
2050

Cnt.
2100

% Cnt.
2100

Bn. $
2050

Bn. $
2100

% Value
2100

Avg.
Year

Std.
Year

RCP Ptile

RCP-26 0.1 13 152 0.05 0.00 0.06 0.09 2067 13
0.5 167 631 0.21 0.06 0.25 0.41 2066 20
0.9 373 2441 0.81 0.14 1.04 1.68 2075 21

RCP-45 0.1 30 304 0.10 0.01 0.11 0.18 2071 15
0.5 181 966 0.32 0.07 0.39 0.63 2072 20
0.9 406 3588 1.19 0.16 1.62 2.60 2078 19

RCP-85 0.1 57 492 0.16 0.02 0.19 0.31 2069 15
0.5 238 1875 0.62 0.09 0.81 1.30 2076 18
0.9 473 6868 2.27 0.18 3.12 5.01 2081 17

*All values in charts and table are undiscounted.

a) Map of ZIP Code Tabulation Areas (ZCTA) included in metro and 1.8m (6ft) inundation area; b) Sea level rise Path and 10-90th

uncertainty band for greenhouse gas concentration pathways (representative concentration pathways) - RCP 2.6 (green), 4.5 (blue),

and 8.5 (red) for; c) Inundation path and uncertainty bands for impaired property counts (left vertical axis) and percent of housing

market (right vertical axis) for RCP 2.6, 4.5, and 8.5; d) Inundation path and uncertainty bands for total value at an undiscounted

rate (left vertical axis) and percent of housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5; e)Box and whisker plot

for impaired property counts through 2100 (left vertical axis) and share of housing market (right vertical axis) for RCP 2.6, 4.5,

and 8.5 - lower whisker 10th quantile, lower box 25th quantile, center line median, upper box 75th quantile, and upper whisker

90th quantile; f)Box and whisker plot for total value at risk through 2100 at an undiscounted rate (left vertical axis) and percent of

housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5 – lower whisker 10th quantile, lower box 25th quantile, center

line median, upper box 75th quantile, and upper whisker 90th quantile. K26, K45, and K85 refer to results associated with RCP2.6,

RCP4.5, and RCP 8.5 from (Kopp et al., 2014, 2017)
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(b) SLR vs Time

Fort Lauderdale: Sea-Level-Rise vs Time
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Fort Lauderdale: Impairment vs Time
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Fort Lauderdale: Sea-Level-Rise Uncertainty by Representative Concentration Pathway (RCP)

RCP2.6 50%

RCP2.6 10%, 90%

RCP4.5 50%

RCP4.5 10%, 90%

RCP8.5 50%
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Cnt.
2050

Cnt.
2100

% Cnt.
2100

Bn. $
2050

Bn. $
2100

% Value
2100

Avg.
Year

Std.
Year

RCP Ptile

RCP-26 0.1 0 2 0.00 0.00 0.00 0.00 2074 21
0.5 2 39 0.02 0.00 0.04 0.06 2081 18
0.9 10 757 0.43 0.00 0.74 1.13 2087 11

RCP-45 0.1 0 9 0.01 0.00 0.00 0.00 2077 9
0.5 5 120 0.07 0.00 0.12 0.19 2086 14
0.9 11 1663 0.94 0.00 1.43 2.20 2089 11

RCP-85 0.1 0 20 0.01 0.00 0.01 0.01 2077 14
0.5 8 534 0.30 0.00 0.54 0.83 2088 10
0.9 14 7347 4.16 0.01 4.80 7.39 2090 9

*All values in charts and table are undiscounted.

a) Map of ZIP Code Tabulation Areas (ZCTA) included in metro and 1.8m (6ft) inundation area; b) Sea level rise Path and 10-90th

uncertainty band for greenhouse gas concentration pathways (representative concentration pathways) - RCP 2.6 (green), 4.5 (blue),

and 8.5 (red) for; c) Inundation path and uncertainty bands for impaired property counts (left vertical axis) and percent of housing

market (right vertical axis) for RCP 2.6, 4.5, and 8.5; d) Inundation path and uncertainty bands for total value at an undiscounted

rate (left vertical axis) and percent of housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5; e)Box and whisker plot

for impaired property counts through 2100 (left vertical axis) and share of housing market (right vertical axis) for RCP 2.6, 4.5,

and 8.5 - lower whisker 10th quantile, lower box 25th quantile, center line median, upper box 75th quantile, and upper whisker

90th quantile; f)Box and whisker plot for total value at risk through 2100 at an undiscounted rate (left vertical axis) and percent of

housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5 – lower whisker 10th quantile, lower box 25th quantile, center

line median, upper box 75th quantile, and upper whisker 90th quantile. K26, K45, and K85 refer to results associated with RCP2.6,

RCP4.5, and RCP 8.5 from (Kopp et al., 2014, 2017)
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(b) SLR vs Time

Mobile: Sea-Level-Rise vs Time
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Mobile: Impairment vs Time
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Mobile: Sea-Level-Rise Uncertainty by Representative Concentration Pathway (RCP)

RCP2.6 50%

RCP2.6 10%, 90%

RCP4.5 50%

RCP4.5 10%, 90%

RCP8.5 50%

RCP8.5 10%, 90%
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Cnt.
2050

Cnt.
2100

% Cnt.
2100

Bn. $
2050

Bn. $
2100

% Value
2100

Avg.
Year

Std.
Year

RCP Ptile

RCP-26 0.1 7 33 0.03 0.00 0.01 0.05 2064 14
0.5 29 108 0.10 0.00 0.02 0.17 2068 21
0.9 53 300 0.27 0.01 0.05 0.38 2073 22

RCP-45 0.1 11 50 0.05 0.00 0.01 0.07 2068 17
0.5 29 148 0.13 0.00 0.03 0.22 2071 19
0.9 53 362 0.33 0.01 0.06 0.45 2074 20

RCP-85 0.1 15 81 0.07 0.00 0.02 0.13 2070 16
0.5 33 232 0.21 0.01 0.04 0.31 2073 19
0.9 67 601 0.55 0.01 0.10 0.77 2076 18

*All values in charts and table are undiscounted.

a) Map of ZIP Code Tabulation Areas (ZCTA) included in metro and 1.8m (6ft) inundation area; b) Sea level rise Path and 10-90th

uncertainty band for greenhouse gas concentration pathways (representative concentration pathways) - RCP 2.6 (green), 4.5 (blue),

and 8.5 (red) for; c) Inundation path and uncertainty bands for impaired property counts (left vertical axis) and percent of housing

market (right vertical axis) for RCP 2.6, 4.5, and 8.5; d) Inundation path and uncertainty bands for total value at an undiscounted

rate (left vertical axis) and percent of housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5; e)Box and whisker plot

for impaired property counts through 2100 (left vertical axis) and share of housing market (right vertical axis) for RCP 2.6, 4.5,

and 8.5 - lower whisker 10th quantile, lower box 25th quantile, center line median, upper box 75th quantile, and upper whisker

90th quantile; f)Box and whisker plot for total value at risk through 2100 at an undiscounted rate (left vertical axis) and percent of

housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5 – lower whisker 10th quantile, lower box 25th quantile, center

line median, upper box 75th quantile, and upper whisker 90th quantile. K26, K45, and K85 refer to results associated with RCP2.6,

RCP4.5, and RCP 8.5 from (Kopp et al., 2014, 2017)
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(b) SLR vs Time

Galveston: Sea-Level-Rise vs Time
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Galveston: Impairment vs Time

K26 K45 K85

2000

4000

6000

8000

Im
p
ai

re
d
 H

ou
se

s 
(C

ou
n
t)

(e) Count

K26 K45 K85

0.5

1.0

1.5

2.0

2.5

Im
p
ai

re
d
 V

al
u
e 

($
 B

il
li
on

)

(f) Value (Discounted at 0.0%)

9.45

18.90

28.35

37.80

%
 o

f 
T

ot
al

 H
ou

se
s

9.05

18.10

27.15

36.20

45.25
%

 o
f 
T

ot
al

 H
ou

si
n
g 

V
al

u
e

Galveston: Sea-Level-Rise Uncertainty by Representative Concentration Pathway (RCP)

RCP2.6 50%

RCP2.6 10%, 90%

RCP4.5 50%

RCP4.5 10%, 90%

RCP8.5 50%

RCP8.5 10%, 90%
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Cnt.
2050

Cnt.
2100

% Cnt.
2100

Bn. $
2050

Bn. $
2100

% Value
2100

Avg.
Year

Std.
Year

RCP Ptile

RCP-26 0.1 179 1051 4.97 0.07 0.40 7.18 2070 17
0.5 408 2587 12.22 0.15 0.93 16.91 2073 19
0.9 792 5413 25.58 0.30 1.73 31.34 2074 20

RCP-45 0.1 215 1502 7.10 0.08 0.54 9.84 2074 18
0.5 408 3275 15.48 0.15 1.12 20.32 2074 18
0.9 655 6027 28.48 0.24 1.89 34.28 2074 18

RCP-85 0.1 253 1964 9.28 0.09 0.70 12.71 2073 16
0.5 466 4851 22.92 0.17 1.58 28.61 2073 17
0.9 962 8330 39.36 0.36 2.63 47.64 2074 18

*All values in charts and table are undiscounted.

a) Map of ZIP Code Tabulation Areas (ZCTA) included in metro and 1.8m (6ft) inundation area; b) Sea level rise Path and 10-90th

uncertainty band for greenhouse gas concentration pathways (representative concentration pathways) - RCP 2.6 (green), 4.5 (blue),

and 8.5 (red) for; c) Inundation path and uncertainty bands for impaired property counts (left vertical axis) and percent of housing

market (right vertical axis) for RCP 2.6, 4.5, and 8.5; d) Inundation path and uncertainty bands for total value at an undiscounted

rate (left vertical axis) and percent of housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5; e)Box and whisker plot

for impaired property counts through 2100 (left vertical axis) and share of housing market (right vertical axis) for RCP 2.6, 4.5,

and 8.5 - lower whisker 10th quantile, lower box 25th quantile, center line median, upper box 75th quantile, and upper whisker

90th quantile; f)Box and whisker plot for total value at risk through 2100 at an undiscounted rate (left vertical axis) and percent of

housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5 – lower whisker 10th quantile, lower box 25th quantile, center

line median, upper box 75th quantile, and upper whisker 90th quantile. K26, K45, and K85 refer to results associated with RCP2.6,

RCP4.5, and RCP 8.5 from (Kopp et al., 2014, 2017)
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(b) SLR vs Time

Houston: Sea-Level-Rise vs Time
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Houston: Impairment vs Time

K26 K45 K85

200

400

Im
p
ai

re
d
 H

ou
se

s 
(C

ou
n
t)

(e) Count

K26 K45 K85

0.05

0.10

0.15

0.20

Im
p
ai

re
d
 V

al
u
e 

($
 B

il
li
on

)

(f) Value (Discounted at 0.0%)

0.02678

0.05356

%
 o

f 
T

ot
al

 H
ou

se
s

0.0260

0.0520

0.0781

0.1041
%

 o
f 
T

ot
al

 H
ou

si
n
g 

V
al

u
e

Houston: Sea-Level-Rise Uncertainty by Representative Concentration Pathway (RCP)

RCP2.6 50%

RCP2.6 10%, 90%

RCP4.5 50%

RCP4.5 10%, 90%

RCP8.5 50%

RCP8.5 10%, 90%
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Cnt.
2050

Cnt.
2100

% Cnt.
2100

Bn. $
2050

Bn. $
2100

% Value
2100

Avg.
Year

Std.
Year

RCP Ptile

RCP-26 0.1 10 63 0.01 0.00 0.02 0.01 2068 16
0.5 24 149 0.02 0.01 0.06 0.03 2073 20
0.9 51 292 0.04 0.02 0.11 0.06 2073 20

RCP-45 0.1 10 81 0.01 0.00 0.03 0.02 2071 17
0.5 24 179 0.02 0.01 0.07 0.04 2073 18
0.9 44 347 0.05 0.02 0.13 0.07 2074 19

RCP-85 0.1 13 110 0.01 0.00 0.04 0.02 2072 17
0.5 30 251 0.03 0.01 0.10 0.05 2072 17
0.9 61 564 0.08 0.02 0.21 0.11 2077 18

*All values in charts and table are undiscounted.

a) Map of ZIP Code Tabulation Areas (ZCTA) included in metro and 1.8m (6ft) inundation area; b) Sea level rise Path and 10-90th

uncertainty band for greenhouse gas concentration pathways (representative concentration pathways) - RCP 2.6 (green), 4.5 (blue),

and 8.5 (red) for; c) Inundation path and uncertainty bands for impaired property counts (left vertical axis) and percent of housing

market (right vertical axis) for RCP 2.6, 4.5, and 8.5; d) Inundation path and uncertainty bands for total value at an undiscounted

rate (left vertical axis) and percent of housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5; e)Box and whisker plot

for impaired property counts through 2100 (left vertical axis) and share of housing market (right vertical axis) for RCP 2.6, 4.5,

and 8.5 - lower whisker 10th quantile, lower box 25th quantile, center line median, upper box 75th quantile, and upper whisker

90th quantile; f)Box and whisker plot for total value at risk through 2100 at an undiscounted rate (left vertical axis) and percent of

housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5 – lower whisker 10th quantile, lower box 25th quantile, center

line median, upper box 75th quantile, and upper whisker 90th quantile. K26, K45, and K85 refer to results associated with RCP2.6,

RCP4.5, and RCP 8.5 from (Kopp et al., 2014, 2017)
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(b) SLR vs Time

Los Angeles: Sea-Level-Rise vs Time
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Los Angeles: Impairment vs Time

K26 K45 K85
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Los Angeles: Sea-Level-Rise Uncertainty by Representative Concentration Pathway (RCP)

RCP2.6 50%

RCP2.6 10%, 90%

RCP4.5 50%

RCP4.5 10%, 90%

RCP8.5 50%

RCP8.5 10%, 90%
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Cnt.
2050

Cnt.
2100

% Cnt.
2100

Bn. $
2050

Bn. $
2100

% Value
2100

Avg.
Year

Std.
Year

RCP Ptile

RCP-26 0.1 0 0 0.00 0.00 0.00 0.00 nan nan
0.5 0 69 0.01 0.00 0.07 0.01 2087 9
0.9 5 813 0.13 0.01 0.85 0.17 2085 13

RCP-45 0.1 0 1 0.00 0.00 0.00 0.00 2082 nan
0.5 1 152 0.02 0.00 0.16 0.03 2085 10
0.9 7 1290 0.21 0.01 1.34 0.27 2085 12

RCP-85 0.1 0 23 0.00 0.00 0.02 0.00 2091 7
0.5 1 485 0.08 0.00 0.54 0.11 2087 11
0.9 23 3005 0.49 0.02 3.03 0.62 2085 11

*All values in charts and table are undiscounted.

a) Map of ZIP Code Tabulation Areas (ZCTA) included in metro and 1.8m (6ft) inundation area; b) Sea level rise Path and 10-90th

uncertainty band for greenhouse gas concentration pathways (representative concentration pathways) - RCP 2.6 (green), 4.5 (blue),

and 8.5 (red) for; c) Inundation path and uncertainty bands for impaired property counts (left vertical axis) and percent of housing

market (right vertical axis) for RCP 2.6, 4.5, and 8.5; d) Inundation path and uncertainty bands for total value at an undiscounted

rate (left vertical axis) and percent of housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5; e)Box and whisker plot

for impaired property counts through 2100 (left vertical axis) and share of housing market (right vertical axis) for RCP 2.6, 4.5,

and 8.5 - lower whisker 10th quantile, lower box 25th quantile, center line median, upper box 75th quantile, and upper whisker

90th quantile; f)Box and whisker plot for total value at risk through 2100 at an undiscounted rate (left vertical axis) and percent of

housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5 – lower whisker 10th quantile, lower box 25th quantile, center

line median, upper box 75th quantile, and upper whisker 90th quantile. K26, K45, and K85 refer to results associated with RCP2.6,

RCP4.5, and RCP 8.5 from (Kopp et al., 2014, 2017)
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(b) SLR vs Time

San Diego: Sea-Level-Rise vs Time
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San Diego: Impairment vs Time
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San Diego: Sea-Level-Rise Uncertainty by Representative Concentration Pathway (RCP)

RCP2.6 50%

RCP2.6 10%, 90%

RCP4.5 50%

RCP4.5 10%, 90%

RCP8.5 50%

RCP8.5 10%, 90%
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Cnt.
2050

Cnt.
2100

% Cnt.
2100

Bn. $
2050

Bn. $
2100

% Value
2100

Avg.
Year

Std.
Year

RCP Ptile

RCP-26 0.1 0 0 0.00 0.00 0.00 0.00 nan nan
0.5 0 73 0.03 0.00 0.07 0.04 2083 11
0.9 13 430 0.15 0.01 0.41 0.22 2082 13

RCP-45 0.1 0 5 0.00 0.00 0.01 0.00 2092 4
0.5 0 122 0.04 0.00 0.12 0.07 2083 12
0.9 15 526 0.19 0.01 0.50 0.27 2080 13

RCP-85 0.1 0 36 0.01 0.00 0.04 0.02 2085 8
0.5 0 330 0.12 0.00 0.31 0.17 2085 11
0.9 19 655 0.23 0.02 0.64 0.35 2076 12

*All values in charts and table are undiscounted.

a) Map of ZIP Code Tabulation Areas (ZCTA) included in metro and 1.8m (6ft) inundation area; b) Sea level rise Path and 10-90th

uncertainty band for greenhouse gas concentration pathways (representative concentration pathways) - RCP 2.6 (green), 4.5 (blue),

and 8.5 (red) for; c) Inundation path and uncertainty bands for impaired property counts (left vertical axis) and percent of housing

market (right vertical axis) for RCP 2.6, 4.5, and 8.5; d) Inundation path and uncertainty bands for total value at an undiscounted

rate (left vertical axis) and percent of housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5; e)Box and whisker plot

for impaired property counts through 2100 (left vertical axis) and share of housing market (right vertical axis) for RCP 2.6, 4.5,

and 8.5 - lower whisker 10th quantile, lower box 25th quantile, center line median, upper box 75th quantile, and upper whisker

90th quantile; f)Box and whisker plot for total value at risk through 2100 at an undiscounted rate (left vertical axis) and percent of

housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5 – lower whisker 10th quantile, lower box 25th quantile, center

line median, upper box 75th quantile, and upper whisker 90th quantile. K26, K45, and K85 refer to results associated with RCP2.6,

RCP4.5, and RCP 8.5 from (Kopp et al., 2014, 2017)
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(b) SLR vs Time

San Francisco Bay: Sea-Level-Rise vs Time
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San Francisco Bay: Impairment vs Time
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San Francisco Bay: Sea-Level-Rise Uncertainty by Representative Concentration Pathway (RCP)

RCP2.6 50%

RCP2.6 10%, 90%

RCP4.5 50%

RCP4.5 10%, 90%

RCP8.5 50%

RCP8.5 10%, 90%
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Cnt.
2050

Cnt.
2100

% Cnt.
2100

Bn. $
2050

Bn. $
2100

% Value
2100

Avg.
Year

Std.
Year

RCP Ptile

RCP-26 0.1 0 322 0.03 0.00 0.17 0.02 2072 11
0.5 353 3034 0.29 0.20 2.08 0.24 2072 14
0.9 1110 5268 0.51 0.67 3.93 0.45 2064 20

RCP-45 0.1 14 506 0.05 0.01 0.28 0.03 2070 12
0.5 401 3387 0.33 0.23 2.33 0.27 2068 14
0.9 1160 6339 0.61 0.71 5.02 0.57 2065 20

RCP-85 0.1 62 2707 0.26 0.03 1.87 0.21 2085 14
0.5 481 4591 0.44 0.28 3.40 0.39 2070 16
0.9 2608 11581 1.11 1.82 8.51 0.97 2076 21

*All values in charts and table are undiscounted.

a) Map of ZIP Code Tabulation Areas (ZCTA) included in metro and 1.8m (6ft) inundation area; b) Sea level rise Path and 10-90th

uncertainty band for greenhouse gas concentration pathways (representative concentration pathways) - RCP 2.6 (green), 4.5 (blue),

and 8.5 (red) for; c) Inundation path and uncertainty bands for impaired property counts (left vertical axis) and percent of housing

market (right vertical axis) for RCP 2.6, 4.5, and 8.5; d) Inundation path and uncertainty bands for total value at an undiscounted

rate (left vertical axis) and percent of housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5; e)Box and whisker plot

for impaired property counts through 2100 (left vertical axis) and share of housing market (right vertical axis) for RCP 2.6, 4.5,

and 8.5 - lower whisker 10th quantile, lower box 25th quantile, center line median, upper box 75th quantile, and upper whisker

90th quantile; f)Box and whisker plot for total value at risk through 2100 at an undiscounted rate (left vertical axis) and percent of

housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5 – lower whisker 10th quantile, lower box 25th quantile, center

line median, upper box 75th quantile, and upper whisker 90th quantile. K26, K45, and K85 refer to results associated with RCP2.6,

RCP4.5, and RCP 8.5 from (Kopp et al., 2014, 2017)
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(b) SLR vs Time

Seattle: Sea-Level-Rise vs Time
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Seattle: Impairment vs Time
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Seattle: Sea-Level-Rise Uncertainty by Representative Concentration Pathway (RCP)

RCP2.6 50%

RCP2.6 10%, 90%
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Cnt.
2050

Cnt.
2100

% Cnt.
2100

Bn. $
2050

Bn. $
2100

% Value
2100

Avg.
Year

Std.
Year

RCP Ptile

RCP-26 0.1 0 1 0.00 0.00 0.00 0.00 2067 nan
0.5 1 12 0.01 0.00 0.02 0.01 2076 15
0.9 4 37 0.02 0.01 0.05 0.03 2079 21

RCP-45 0.1 0 3 0.00 0.00 0.01 0.00 2085 18
0.5 1 12 0.01 0.00 0.02 0.01 2070 12
0.9 4 41 0.02 0.01 0.05 0.03 2078 18

RCP-85 0.1 0 8 0.00 0.00 0.01 0.01 2082 13
0.5 1 18 0.01 0.00 0.03 0.02 2074 17
0.9 6 74 0.03 0.01 0.09 0.06 2081 16

*All values in charts and table are undiscounted.

a) Map of ZIP Code Tabulation Areas (ZCTA) included in metro and 1.8m (6ft) inundation area; b) Sea level rise Path and 10-90th

uncertainty band for greenhouse gas concentration pathways (representative concentration pathways) - RCP 2.6 (green), 4.5 (blue),

and 8.5 (red) for; c) Inundation path and uncertainty bands for impaired property counts (left vertical axis) and percent of housing

market (right vertical axis) for RCP 2.6, 4.5, and 8.5; d) Inundation path and uncertainty bands for total value at an undiscounted

rate (left vertical axis) and percent of housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5; e)Box and whisker plot

for impaired property counts through 2100 (left vertical axis) and share of housing market (right vertical axis) for RCP 2.6, 4.5,

and 8.5 - lower whisker 10th quantile, lower box 25th quantile, center line median, upper box 75th quantile, and upper whisker

90th quantile; f)Box and whisker plot for total value at risk through 2100 at an undiscounted rate (left vertical axis) and percent of

housing market value (right vertical axis) for RCP 2.6, 4.5, and 8.5 – lower whisker 10th quantile, lower box 25th quantile, center

line median, upper box 75th quantile, and upper whisker 90th quantile. K26, K45, and K85 refer to results associated with RCP2.6,

RCP4.5, and RCP 8.5 from (Kopp et al., 2014, 2017)
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