{
"cells": [
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import pandas as pd\n",
"import numpy as np\n",
"import matplotlib.pyplot as plt\n",
"import seaborn as sns\n"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"
\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" id \n",
" season \n",
" city \n",
" date \n",
" team1 \n",
" team2 \n",
" toss_winner \n",
" toss_decision \n",
" result \n",
" dl_applied \n",
" winner \n",
" win_by_runs \n",
" win_by_wickets \n",
" player_of_match \n",
" venue \n",
" umpire1 \n",
" umpire2 \n",
" umpire3 \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 1 \n",
" 2017 \n",
" Hyderabad \n",
" 4/5/2017 \n",
" Sunrisers Hyderabad \n",
" Royal Challengers Bangalore \n",
" Royal Challengers Bangalore \n",
" field \n",
" normal \n",
" 0 \n",
" Sunrisers Hyderabad \n",
" 35 \n",
" 0 \n",
" Yuvraj Singh \n",
" Rajiv Gandhi International Stadium, Uppal \n",
" AY Dandekar \n",
" NJ Llong \n",
" NaN \n",
" \n",
" \n",
" 1 \n",
" 2 \n",
" 2017 \n",
" Pune \n",
" 4/6/2017 \n",
" Mumbai Indians \n",
" Rising Pune Supergiant \n",
" Rising Pune Supergiant \n",
" field \n",
" normal \n",
" 0 \n",
" Rising Pune Supergiant \n",
" 0 \n",
" 7 \n",
" SPD Smith \n",
" Maharashtra Cricket Association Stadium \n",
" A Nand Kishore \n",
" S Ravi \n",
" NaN \n",
" \n",
" \n",
" 2 \n",
" 3 \n",
" 2017 \n",
" Rajkot \n",
" 4/7/2017 \n",
" Gujarat Lions \n",
" Kolkata Knight Riders \n",
" Kolkata Knight Riders \n",
" field \n",
" normal \n",
" 0 \n",
" Kolkata Knight Riders \n",
" 0 \n",
" 10 \n",
" CA Lynn \n",
" Saurashtra Cricket Association Stadium \n",
" Nitin Menon \n",
" CK Nandan \n",
" NaN \n",
" \n",
" \n",
" 3 \n",
" 4 \n",
" 2017 \n",
" Indore \n",
" 4/8/2017 \n",
" Rising Pune Supergiant \n",
" Kings XI Punjab \n",
" Kings XI Punjab \n",
" field \n",
" normal \n",
" 0 \n",
" Kings XI Punjab \n",
" 0 \n",
" 6 \n",
" GJ Maxwell \n",
" Holkar Cricket Stadium \n",
" AK Chaudhary \n",
" C Shamshuddin \n",
" NaN \n",
" \n",
" \n",
" 4 \n",
" 5 \n",
" 2017 \n",
" Bangalore \n",
" 4/8/2017 \n",
" Royal Challengers Bangalore \n",
" Delhi Daredevils \n",
" Royal Challengers Bangalore \n",
" bat \n",
" normal \n",
" 0 \n",
" Royal Challengers Bangalore \n",
" 15 \n",
" 0 \n",
" KM Jadhav \n",
" M Chinnaswamy Stadium \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id season city date team1 \\\n",
"0 1 2017 Hyderabad 4/5/2017 Sunrisers Hyderabad \n",
"1 2 2017 Pune 4/6/2017 Mumbai Indians \n",
"2 3 2017 Rajkot 4/7/2017 Gujarat Lions \n",
"3 4 2017 Indore 4/8/2017 Rising Pune Supergiant \n",
"4 5 2017 Bangalore 4/8/2017 Royal Challengers Bangalore \n",
"\n",
" team2 toss_winner toss_decision \\\n",
"0 Royal Challengers Bangalore Royal Challengers Bangalore field \n",
"1 Rising Pune Supergiant Rising Pune Supergiant field \n",
"2 Kolkata Knight Riders Kolkata Knight Riders field \n",
"3 Kings XI Punjab Kings XI Punjab field \n",
"4 Delhi Daredevils Royal Challengers Bangalore bat \n",
"\n",
" result dl_applied winner win_by_runs \\\n",
"0 normal 0 Sunrisers Hyderabad 35 \n",
"1 normal 0 Rising Pune Supergiant 0 \n",
"2 normal 0 Kolkata Knight Riders 0 \n",
"3 normal 0 Kings XI Punjab 0 \n",
"4 normal 0 Royal Challengers Bangalore 15 \n",
"\n",
" win_by_wickets player_of_match venue \\\n",
"0 0 Yuvraj Singh Rajiv Gandhi International Stadium, Uppal \n",
"1 7 SPD Smith Maharashtra Cricket Association Stadium \n",
"2 10 CA Lynn Saurashtra Cricket Association Stadium \n",
"3 6 GJ Maxwell Holkar Cricket Stadium \n",
"4 0 KM Jadhav M Chinnaswamy Stadium \n",
"\n",
" umpire1 umpire2 umpire3 \n",
"0 AY Dandekar NJ Llong NaN \n",
"1 A Nand Kishore S Ravi NaN \n",
"2 Nitin Menon CK Nandan NaN \n",
"3 AK Chaudhary C Shamshuddin NaN \n",
"4 NaN NaN NaN "
]
},
"execution_count": 2,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df=pd.read_csv('F:\\Data Science projects\\EDA\\IPL/matches.csv')\n",
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"id 0\n",
"season 0\n",
"city 7\n",
"date 0\n",
"team1 0\n",
"team2 0\n",
"toss_winner 0\n",
"toss_decision 0\n",
"result 0\n",
"dl_applied 0\n",
"winner 3\n",
"win_by_runs 0\n",
"win_by_wickets 0\n",
"player_of_match 3\n",
"venue 0\n",
"umpire1 1\n",
"umpire2 1\n",
"umpire3 636\n",
"dtype: int64"
]
},
"execution_count": 3,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.isnull().sum()"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(636, 18)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.shape"
]
},
{
"cell_type": "code",
"execution_count": 5,
"metadata": {},
"outputs": [],
"source": [
"df.drop(['umpire3'],axis=1,inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Index(['id', 'season', 'city', 'date', 'team1', 'team2', 'toss_winner',\n",
" 'toss_decision', 'result', 'dl_applied', 'winner', 'win_by_runs',\n",
" 'win_by_wickets', 'player_of_match', 'venue', 'umpire1', 'umpire2'],\n",
" dtype='object')"
]
},
"execution_count": 6,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.columns"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"Teams={\n",
" 'Royal Challengers Bangalore':'RCB', \n",
" 'Sunrisers Hyderabad':'SRH',\n",
" 'Rising Pune Supergiant':'RPS',\n",
" 'Mumbai Indians':'MI',\n",
" 'Kolkata Knight Riders':'KKR', \n",
" 'Gujarat Lions':'GL',\n",
" 'Kings XI Punjab':'KXIP',\n",
" 'Delhi Daredevils':'DD',\n",
" 'Chennai Super Kings':'CSK',\n",
" 'Rajasthan Royals':'RR',\n",
" 'Deccan Chargers':'DC',\n",
" 'Kochi Tuskers Kerala':'KTK',\n",
" 'Pune Warriors':'PW',\n",
" 'Rising Pune Supergiants':'RPS'\n",
"}"
]
},
{
"cell_type": "code",
"execution_count": 8,
"metadata": {},
"outputs": [],
"source": [
"df['team1']=df['team1'].map(Teams)\n",
"df['team2']=df['team2'].map(Teams)"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" id \n",
" season \n",
" city \n",
" date \n",
" team1 \n",
" team2 \n",
" toss_winner \n",
" toss_decision \n",
" result \n",
" dl_applied \n",
" winner \n",
" win_by_runs \n",
" win_by_wickets \n",
" player_of_match \n",
" venue \n",
" umpire1 \n",
" umpire2 \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 1 \n",
" 2017 \n",
" Hyderabad \n",
" 4/5/2017 \n",
" SRH \n",
" RCB \n",
" Royal Challengers Bangalore \n",
" field \n",
" normal \n",
" 0 \n",
" Sunrisers Hyderabad \n",
" 35 \n",
" 0 \n",
" Yuvraj Singh \n",
" Rajiv Gandhi International Stadium, Uppal \n",
" AY Dandekar \n",
" NJ Llong \n",
" \n",
" \n",
" 1 \n",
" 2 \n",
" 2017 \n",
" Pune \n",
" 4/6/2017 \n",
" MI \n",
" RPS \n",
" Rising Pune Supergiant \n",
" field \n",
" normal \n",
" 0 \n",
" Rising Pune Supergiant \n",
" 0 \n",
" 7 \n",
" SPD Smith \n",
" Maharashtra Cricket Association Stadium \n",
" A Nand Kishore \n",
" S Ravi \n",
" \n",
" \n",
" 2 \n",
" 3 \n",
" 2017 \n",
" Rajkot \n",
" 4/7/2017 \n",
" GL \n",
" KKR \n",
" Kolkata Knight Riders \n",
" field \n",
" normal \n",
" 0 \n",
" Kolkata Knight Riders \n",
" 0 \n",
" 10 \n",
" CA Lynn \n",
" Saurashtra Cricket Association Stadium \n",
" Nitin Menon \n",
" CK Nandan \n",
" \n",
" \n",
" 3 \n",
" 4 \n",
" 2017 \n",
" Indore \n",
" 4/8/2017 \n",
" RPS \n",
" KXIP \n",
" Kings XI Punjab \n",
" field \n",
" normal \n",
" 0 \n",
" Kings XI Punjab \n",
" 0 \n",
" 6 \n",
" GJ Maxwell \n",
" Holkar Cricket Stadium \n",
" AK Chaudhary \n",
" C Shamshuddin \n",
" \n",
" \n",
" 4 \n",
" 5 \n",
" 2017 \n",
" Bangalore \n",
" 4/8/2017 \n",
" RCB \n",
" DD \n",
" Royal Challengers Bangalore \n",
" bat \n",
" normal \n",
" 0 \n",
" Royal Challengers Bangalore \n",
" 15 \n",
" 0 \n",
" KM Jadhav \n",
" M Chinnaswamy Stadium \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id season city date team1 team2 toss_winner \\\n",
"0 1 2017 Hyderabad 4/5/2017 SRH RCB Royal Challengers Bangalore \n",
"1 2 2017 Pune 4/6/2017 MI RPS Rising Pune Supergiant \n",
"2 3 2017 Rajkot 4/7/2017 GL KKR Kolkata Knight Riders \n",
"3 4 2017 Indore 4/8/2017 RPS KXIP Kings XI Punjab \n",
"4 5 2017 Bangalore 4/8/2017 RCB DD Royal Challengers Bangalore \n",
"\n",
" toss_decision result dl_applied winner win_by_runs \\\n",
"0 field normal 0 Sunrisers Hyderabad 35 \n",
"1 field normal 0 Rising Pune Supergiant 0 \n",
"2 field normal 0 Kolkata Knight Riders 0 \n",
"3 field normal 0 Kings XI Punjab 0 \n",
"4 bat normal 0 Royal Challengers Bangalore 15 \n",
"\n",
" win_by_wickets player_of_match venue \\\n",
"0 0 Yuvraj Singh Rajiv Gandhi International Stadium, Uppal \n",
"1 7 SPD Smith Maharashtra Cricket Association Stadium \n",
"2 10 CA Lynn Saurashtra Cricket Association Stadium \n",
"3 6 GJ Maxwell Holkar Cricket Stadium \n",
"4 0 KM Jadhav M Chinnaswamy Stadium \n",
"\n",
" umpire1 umpire2 \n",
"0 AY Dandekar NJ Llong \n",
"1 A Nand Kishore S Ravi \n",
"2 Nitin Menon CK Nandan \n",
"3 AK Chaudhary C Shamshuddin \n",
"4 NaN NaN "
]
},
"execution_count": 9,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Some Basic Analysis"
]
},
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Total Matches Played: 636\n",
" \n",
" Venues Played At: ['Hyderabad' 'Pune' 'Rajkot' 'Indore' 'Bangalore' 'Mumbai' 'Kolkata'\n",
" 'Delhi' 'Chandigarh' 'Kanpur' 'Jaipur' 'Chennai' 'Cape Town'\n",
" 'Port Elizabeth' 'Durban' 'Centurion' 'East London' 'Johannesburg'\n",
" 'Kimberley' 'Bloemfontein' 'Ahmedabad' 'Cuttack' 'Nagpur' 'Dharamsala'\n",
" 'Kochi' 'Visakhapatnam' 'Raipur' 'Ranchi' 'Abu Dhabi' 'Sharjah' nan]\n",
" \n",
" Teams : ['SRH' 'MI' 'GL' 'RPS' 'RCB' 'KKR' 'DD' 'KXIP' 'CSK' 'RR' 'DC' 'KTK' 'PW']\n"
]
}
],
"source": [
"print('Total Matches Played:',df.shape[0])\n",
"print(' \\n Venues Played At:',df['city'].unique()) \n",
"print(' \\n Teams :',df['team1'].unique())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### most man of the match awards"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"CH Gayle 18\n",
"YK Pathan 16\n",
"AB de Villiers 15\n",
"DA Warner 15\n",
"SK Raina 14\n",
" ..\n",
"DL Vettori 1\n",
"AC Voges 1\n",
"JDP Oram 1\n",
"LH Ferguson 1\n",
"BCJ Cutting 1\n",
"Name: player_of_match, Length: 201, dtype: int64\n"
]
}
],
"source": [
"print(df['player_of_match'].value_counts())"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### maximum win by runs"
]
},
{
"cell_type": "code",
"execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" id \n",
" season \n",
" city \n",
" date \n",
" team1 \n",
" team2 \n",
" toss_winner \n",
" toss_decision \n",
" result \n",
" dl_applied \n",
" winner \n",
" win_by_runs \n",
" win_by_wickets \n",
" player_of_match \n",
" venue \n",
" umpire1 \n",
" umpire2 \n",
" \n",
" \n",
" \n",
" \n",
" 43 \n",
" 44 \n",
" 2017 \n",
" Delhi \n",
" 5/6/2017 \n",
" MI \n",
" DD \n",
" Delhi Daredevils \n",
" field \n",
" normal \n",
" 0 \n",
" Mumbai Indians \n",
" 146 \n",
" 0 \n",
" LMP Simmons \n",
" Feroz Shah Kotla \n",
" Nitin Menon \n",
" CK Nandan \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id season city date team1 team2 toss_winner toss_decision \\\n",
"43 44 2017 Delhi 5/6/2017 MI DD Delhi Daredevils field \n",
"\n",
" result dl_applied winner win_by_runs win_by_wickets \\\n",
"43 normal 0 Mumbai Indians 146 0 \n",
"\n",
" player_of_match venue umpire1 umpire2 \n",
"43 LMP Simmons Feroz Shah Kotla Nitin Menon CK Nandan "
]
},
"execution_count": 12,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[df['win_by_runs']==df['win_by_runs'].max()]"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Mumbai Indians(MI) defeated Delhi Daredevils(DD) with the highest run difference"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### highest wins by wickets"
]
},
{
"cell_type": "code",
"execution_count": 13,
"metadata": {
"scrolled": true
},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" id \n",
" season \n",
" city \n",
" date \n",
" team1 \n",
" team2 \n",
" toss_winner \n",
" toss_decision \n",
" result \n",
" dl_applied \n",
" winner \n",
" win_by_runs \n",
" win_by_wickets \n",
" player_of_match \n",
" venue \n",
" umpire1 \n",
" umpire2 \n",
" \n",
" \n",
" \n",
" \n",
" 2 \n",
" 3 \n",
" 2017 \n",
" Rajkot \n",
" 4/7/2017 \n",
" GL \n",
" KKR \n",
" Kolkata Knight Riders \n",
" field \n",
" normal \n",
" 0 \n",
" Kolkata Knight Riders \n",
" 0 \n",
" 10 \n",
" CA Lynn \n",
" Saurashtra Cricket Association Stadium \n",
" Nitin Menon \n",
" CK Nandan \n",
" \n",
" \n",
" 34 \n",
" 35 \n",
" 2017 \n",
" Chandigarh \n",
" 4/30/2017 \n",
" DD \n",
" KXIP \n",
" Kings XI Punjab \n",
" field \n",
" normal \n",
" 0 \n",
" Kings XI Punjab \n",
" 0 \n",
" 10 \n",
" Sandeep Sharma \n",
" Punjab Cricket Association IS Bindra Stadium, ... \n",
" YC Barde \n",
" CK Nandan \n",
" \n",
" \n",
" 71 \n",
" 72 \n",
" 2008 \n",
" Mumbai \n",
" 4/27/2008 \n",
" MI \n",
" DC \n",
" Deccan Chargers \n",
" field \n",
" normal \n",
" 0 \n",
" Deccan Chargers \n",
" 0 \n",
" 10 \n",
" AC Gilchrist \n",
" Dr DY Patil Sports Academy \n",
" Asad Rauf \n",
" SL Shastri \n",
" \n",
" \n",
" 119 \n",
" 120 \n",
" 2009 \n",
" Cape Town \n",
" 4/19/2009 \n",
" KXIP \n",
" DD \n",
" Delhi Daredevils \n",
" field \n",
" normal \n",
" 1 \n",
" Delhi Daredevils \n",
" 0 \n",
" 10 \n",
" DL Vettori \n",
" Newlands \n",
" MR Benson \n",
" SD Ranade \n",
" \n",
" \n",
" 183 \n",
" 184 \n",
" 2010 \n",
" Bangalore \n",
" 3/18/2010 \n",
" RR \n",
" RCB \n",
" Royal Challengers Bangalore \n",
" field \n",
" normal \n",
" 0 \n",
" Royal Challengers Bangalore \n",
" 0 \n",
" 10 \n",
" JH Kallis \n",
" M Chinnaswamy Stadium \n",
" K Hariharan \n",
" DJ Harper \n",
" \n",
" \n",
" 298 \n",
" 299 \n",
" 2011 \n",
" Mumbai \n",
" 5/20/2011 \n",
" MI \n",
" RR \n",
" Mumbai Indians \n",
" bat \n",
" normal \n",
" 0 \n",
" Rajasthan Royals \n",
" 0 \n",
" 10 \n",
" SR Watson \n",
" Wankhede Stadium \n",
" RE Koertzen \n",
" PR Reiffel \n",
" \n",
" \n",
" 376 \n",
" 377 \n",
" 2012 \n",
" Jaipur \n",
" 5/20/2012 \n",
" RR \n",
" MI \n",
" Rajasthan Royals \n",
" bat \n",
" normal \n",
" 0 \n",
" Mumbai Indians \n",
" 0 \n",
" 10 \n",
" DR Smith \n",
" Sawai Mansingh Stadium \n",
" HDPK Dharmasena \n",
" C Shamshuddin \n",
" \n",
" \n",
" 390 \n",
" 391 \n",
" 2013 \n",
" Chandigarh \n",
" 4/10/2013 \n",
" KXIP \n",
" CSK \n",
" Chennai Super Kings \n",
" field \n",
" normal \n",
" 0 \n",
" Chennai Super Kings \n",
" 0 \n",
" 10 \n",
" MEK Hussey \n",
" Punjab Cricket Association Stadium, Mohali \n",
" Aleem Dar \n",
" C Shamshuddin \n",
" \n",
" \n",
" 542 \n",
" 543 \n",
" 2015 \n",
" Delhi \n",
" 4/26/2015 \n",
" DD \n",
" RCB \n",
" Royal Challengers Bangalore \n",
" field \n",
" normal \n",
" 0 \n",
" Royal Challengers Bangalore \n",
" 0 \n",
" 10 \n",
" VR Aaron \n",
" Feroz Shah Kotla \n",
" M Erasmus \n",
" S Ravi \n",
" \n",
" \n",
" 590 \n",
" 591 \n",
" 2016 \n",
" Rajkot \n",
" 4/21/2016 \n",
" GL \n",
" SRH \n",
" Sunrisers Hyderabad \n",
" field \n",
" normal \n",
" 0 \n",
" Sunrisers Hyderabad \n",
" 0 \n",
" 10 \n",
" B Kumar \n",
" Saurashtra Cricket Association Stadium \n",
" K Bharatan \n",
" HDPK Dharmasena \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id season city date team1 team2 \\\n",
"2 3 2017 Rajkot 4/7/2017 GL KKR \n",
"34 35 2017 Chandigarh 4/30/2017 DD KXIP \n",
"71 72 2008 Mumbai 4/27/2008 MI DC \n",
"119 120 2009 Cape Town 4/19/2009 KXIP DD \n",
"183 184 2010 Bangalore 3/18/2010 RR RCB \n",
"298 299 2011 Mumbai 5/20/2011 MI RR \n",
"376 377 2012 Jaipur 5/20/2012 RR MI \n",
"390 391 2013 Chandigarh 4/10/2013 KXIP CSK \n",
"542 543 2015 Delhi 4/26/2015 DD RCB \n",
"590 591 2016 Rajkot 4/21/2016 GL SRH \n",
"\n",
" toss_winner toss_decision result dl_applied \\\n",
"2 Kolkata Knight Riders field normal 0 \n",
"34 Kings XI Punjab field normal 0 \n",
"71 Deccan Chargers field normal 0 \n",
"119 Delhi Daredevils field normal 1 \n",
"183 Royal Challengers Bangalore field normal 0 \n",
"298 Mumbai Indians bat normal 0 \n",
"376 Rajasthan Royals bat normal 0 \n",
"390 Chennai Super Kings field normal 0 \n",
"542 Royal Challengers Bangalore field normal 0 \n",
"590 Sunrisers Hyderabad field normal 0 \n",
"\n",
" winner win_by_runs win_by_wickets player_of_match \\\n",
"2 Kolkata Knight Riders 0 10 CA Lynn \n",
"34 Kings XI Punjab 0 10 Sandeep Sharma \n",
"71 Deccan Chargers 0 10 AC Gilchrist \n",
"119 Delhi Daredevils 0 10 DL Vettori \n",
"183 Royal Challengers Bangalore 0 10 JH Kallis \n",
"298 Rajasthan Royals 0 10 SR Watson \n",
"376 Mumbai Indians 0 10 DR Smith \n",
"390 Chennai Super Kings 0 10 MEK Hussey \n",
"542 Royal Challengers Bangalore 0 10 VR Aaron \n",
"590 Sunrisers Hyderabad 0 10 B Kumar \n",
"\n",
" venue umpire1 \\\n",
"2 Saurashtra Cricket Association Stadium Nitin Menon \n",
"34 Punjab Cricket Association IS Bindra Stadium, ... YC Barde \n",
"71 Dr DY Patil Sports Academy Asad Rauf \n",
"119 Newlands MR Benson \n",
"183 M Chinnaswamy Stadium K Hariharan \n",
"298 Wankhede Stadium RE Koertzen \n",
"376 Sawai Mansingh Stadium HDPK Dharmasena \n",
"390 Punjab Cricket Association Stadium, Mohali Aleem Dar \n",
"542 Feroz Shah Kotla M Erasmus \n",
"590 Saurashtra Cricket Association Stadium K Bharatan \n",
"\n",
" umpire2 \n",
"2 CK Nandan \n",
"34 CK Nandan \n",
"71 SL Shastri \n",
"119 SD Ranade \n",
"183 DJ Harper \n",
"298 PR Reiffel \n",
"376 C Shamshuddin \n",
"390 C Shamshuddin \n",
"542 S Ravi \n",
"590 HDPK Dharmasena "
]
},
"execution_count": 13,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df[df['win_by_wickets']==df['win_by_wickets'].max()]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Toss Decisions across Seasons"
]
},
{
"cell_type": "code",
"execution_count": 24,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAa80lEQVR4nO3de3RW9Z3v8fe3XBopVyFeIxOcgx0thFQDtYMLrNqgSMUKduqVi0jx0kU7IwNzug5LqW0VPRXBC7pGIXS89UBRj6dOVUaLOlQTNEAElAGRRlHCVRBxCHzPH3sTQ0jwSfLs50ny+7zWysp+fs++fNk8+WTnt/f+bXN3REQkHF/LdgEiIpJZCn4RkcAo+EVEAqPgFxEJjIJfRCQw7bNdQCp69erl+fn52S5DRKRVWb58+VZ3z63b3iqCPz8/n7KysmyXISLSqpjZB/W1q6tHRCQwiR7xm9lGYDdwAKh29yIzOxZ4CsgHNgI/cvcdSdYhIiJfysQR//fcvdDdi+LX04Al7t4XWBK/FhGRDMlGH/9I4Nx4ugR4BZja2JXs37+fyspK9u3bl77K2qCcnBzy8vLo0KFDtksRkRYi6eB34AUzc+Ahd38YON7dNwO4+2YzO66+Bc1sIjARoHfv3ke8X1lZSZcuXcjPz8fMEvsHtGbuzrZt26isrKRPnz7ZLkdEWoiku3oGu/uZwEXATWY2JNUF3f1hdy9y96Lc3COuRmLfvn307NlToX8UZkbPnj31V5GIHCbR4Hf3j+LvW4DFwCDgEzM7ESD+vqWp61fofzXtIxGpK7HgN7NvmFmXQ9NAMVABPAuMiWcbAzyTVA0iInKkJPv4jwcWx0ec7YHH3f3fzawU+L2ZXQdsAi5PsAYREakjseB39w3AgHratwHnp3t7O3fu5PHHH+fGG29M96rrtXHjRkaMGEFFRUWjl50+fTpDhgzhggsuqPf9uXPn0qlTJ6699trmlikStLOmLGj0Msvvavs/d61iyIZU7Ny5kwceeCBjwd8cM2bMOOr7kyZNylAlIhKiNjNkw7Rp01i/fj2FhYVMmTKFKVOm0K9fP/r3789TTz0FwObNmxkyZAiFhYX069ePV199lQMHDjB27Niaee+5554Gt7F8+XIGDBjAd7/7Xe6///6a9gMHDjBlyhQGDhxIQUEBDz30UM17M2fOpH///gwYMIBp06J71caOHcvChQtr6j7jjDMoKCjglltuAeDWW2/l7rvvBqC8vJyzzz6bgoICfvjDH7JjR3ST87nnnsvUqVMZNGgQp512Gq+++moa96aItGVt5oj/jjvuoKKigvLychYtWsTcuXNZsWIFW7duZeDAgQwZMoTHH3+cYcOG8Ytf/IIDBw6wd+9eysvL+fDDD2u6bHbu3NngNsaNG8ecOXMYOnQoU6ZMqWl/5JFH6NatG6WlpXzxxRcMHjyY4uJi1q5dy9NPP80bb7xBp06d2L59+2Hr2759O4sXL2bt2rWYWb3bvvbaa2u2OX36dG677TZmzZoFQHV1NW+++SZ//OMfue2223jppZfSsStFpI1rM8Ff22uvvcYVV1xBu3btOP744xk6dCilpaUMHDiQ8ePHs3//fi699FIKCws59dRT2bBhAz/96U+5+OKLKS4urnedu3btYufOnQwdOhSAa665hueffx6AF154gZUrV9Ycxe/atYt169bx0ksvMW7cODp16gTAsccee9g6u3btSk5ODhMmTODiiy9mxIgRR93mmDFjuPzyL8+FX3bZZQCcddZZbNy4sZl7renUjyrSsKb8fECyPyNtpqunNnevt33IkCEsXbqUk08+mWuuuYYFCxbQo0cPVqxYwbnnnsv999/PhAkTGlxnQ9fEuztz5syhvLyc8vJy3n//fYqLi4+6DED79u158803GTVqFE8//TQXXnhho/6dX//61wFo164d1dXVjVpWRMLVZoK/S5cu7N69G4gC/qmnnuLAgQNUVVWxdOlSBg0axAcffMBxxx3H9ddfz3XXXcdbb73F1q1bOXjwIKNGjeKXv/wlb731Vr3r7969O926deO1114D4LHHHqt5b9iwYTz44IPs378fgPfee4/PPvuM4uJiHn30Ufbu3QtwRFfPnj172LVrF8OHD2fWrFmUl5cf9n63bt3o0aNHTf/97373u5qjfxGRpmozXT09e/Zk8ODB9OvXj4suuoiCggIGDBiAmTFz5kxOOOEESkpKuOuuu+jQoQOdO3dmwYIFfPjhh4wbN46DBw8C8Jvf/KbBbcybN4/x48fTqVMnhg0bVtM+YcIENm7cyJlnnom7k5ubW3MEX15eTlFRER07dmT48OH8+te/rllu9+7djBw5kn379uHu9Z5YLikpYdKkSezdu5dTTz2VefPmpXGviUiIrKFukZakqKjI6z6Ba82aNZx++ulZqqh1SXpfqY9fWqqW8NnMZh+/mS2vNSR+jTbT1SMiIqlpM1096XTTTTfx+uuvH9Y2efJkxo0bl6WKRETSR8Ffj9o3Z4mItDXq6hERCYyCX0QkMAp+EZHABNPH39RLqhqS6qVWs2fP5sEHH+Tjjz9m6tSpNQO11Wf+/PmUlZVx3333HfFe586d2bNnT5PrFRE5JJjgz5YHHniA559/Xg87F5EWQ8GfoEmTJrFhwwYuueQSxo8fz/r167nvvvuoqqpi0qRJbNq0CYBZs2YxePDgw5Z9//33ufLKK6murm70GD7Sumya0b/Ry/SeviqBSiQU6uNP0Ny5cznppJN4+eWX6dGjR0375MmT+fnPf05paSmLFi2qd2C4yZMnc8MNN1BaWsoJJ5yQybJFpI3TEX8WvPTSS6xevbrm9aefflozwNwhr7/+OosWLQKiIaCnTp2a0RpFpO1S8GfBwYMHWbZsGcccc8xR5zvakM4iIk2lrp4sKC4uPuzKnbrDMQMMHjyYJ598Ejh8CGgRkeYK5oi/JY0GOXv2bG666SYKCgqorq5myJAhzJ0797B57r33Xq688kruvfdeRo0alaVKRaQtCib4s+XQIxHHjh3L2LFjAejVq1fNA+Brqz1Pnz59WLZsWc17R7v+X0SkMdTVIyISGAW/iEhgFPwiIoFR8IuIBEbBLyISGAW/iEhggrmcsykDYR1NKoNkbdy4kREjRlBRUZHSOufPn09xcTEnnXRSc8sTEWmQjvhbkPnz5/PRRx9luwwRaeMU/Amrrq5mzJgxFBQUMHr0aPbu3cuMGTMYOHAg/fr1Y+LEibg7CxcupKysjKuuuorCwkI+//zzbJcuIm2Ugj9h7777LhMnTmTlypV07dqVBx54gJtvvpnS0lIqKir4/PPPee655xg9ejRFRUU89thjlJeXf+UAbiIiTRVMH3+2nHLKKTUPWbn66quZPXs2ffr0YebMmezdu5ft27fzrW99ix/84AdZrlTaiqY8ZrQljWUlyUv8iN/M2pnZ22b2XPy6j5m9YWbrzOwpM+uYdA3ZVHdoZTPjxhtvZOHChaxatYrrr7+effv2Zak6EQlRJrp6JgNrar2+E7jH3fsCO4DrMlBD1mzatKlmsLUnnniCc845B4gGatuzZw8LFy6smbdLly5HPJBFRCTdEu3qMbM84GLgV8A/WnT4ex5wZTxLCXAr8GCSdUD2nlF6+umnU1JSwk9+8hP69u3LDTfcwI4dO+jfvz/5+fkMHDiwZt6xY8cyadIkjjnmmJQe1CIi0hRJ9/HPAv4Z6BK/7gnsdPfq+HUlcHJ9C5rZRGAiQO/evRMuMxn5+fmHPWLxkNtvv53bb7/9iPZRo0Zp7H0RSVxiXT1mNgLY4u7LazfXM6vXt7y7P+zuRe5elJubm0iNIiIhSvKIfzBwiZkNB3KArkR/AXQ3s/bxUX8eoDuWREQyKLEjfnf/F3fPc/d84MfAf7j7VcDLwOh4tjHAM83YRrPrbOu0j0Skrmxcxz8VeNLMbgfeBh5pykpycnLYtm0bPXv2POKSSYm4O9u2bSMnJ+ew9qaMW5Stk+Mikn4ZCX53fwV4JZ7eAAxq7jrz8vKorKykqqqquatq03JycsjLy8t2GSLSgrTaO3c7dOhAnz59sl2GiEiro7F6REQCo+AXEQmMgl9EJDAKfhGRwCj4RUQC02qv6hGprSlj0C/ucleTtqV7GqS10xG/iEhgFPwiIoFR8IuIBEbBLyISGAW/iEhgFPwiIoFR8IuIBEbBLyISGN3AlUF6AIqItAQ64hcRCYyCX0QkMAp+EZHAqI9fRBLRlIHzlt91bQKVSF064hcRCYyCX0QkMAp+EZHAKPhFRAKj4BcRCYyCX0QkMAp+EZHAKPhFRALT6m7gaspNIaAbQ0REDtERv4hIYBT8IiKBUfCLiASm1fXxi7RkTTkHtbhLAoWIHEViR/xmlmNmb5rZCjN7x8xui9v7mNkbZrbOzJ4ys45J1SAiIkdKsqvnC+A8dx8AFAIXmtnZwJ3APe7eF9gBXJdgDSIiUkdiwe+RPfHLDvGXA+cBC+P2EuDSpGoQEZEjJXpy18zamVk5sAV4EVgP7HT36niWSuDkBpadaGZlZlZWVVWVZJkiIkFJNPjd/YC7FwJ5wCDg9Ppma2DZh929yN2LcnNzkyxTRCQoGbmc0913Aq8AZwPdzezQ1UR5wEeZqEFERCJJXtWTa2bd4+ljgAuANcDLwOh4tjHAM0nVICIiR0ryOv4TgRIza0f0C+b37v6cma0GnjSz24G3gUcSrEFEROpILPjdfSXw7XraNxD194uISBZoyAYRkcCkFPxmtiSVNhERafmO2tVjZjlAJ6CXmfUALH6rK3BSwrWJiEgCvqqP/yfAz4hCfjlfBv+nwP0J1iUiIgk5avC7+73AvWb2U3efk6GaREQkQSld1ePuc8zs74H82su4e9OegygiIlmTUvCb2e+AvwXKgQNxswMKfhGRVibV6/iLgDPcvd5xdUREpPVI9Tr+CuCEJAsREZHMSPWIvxew2szeJHrACgDufkkiVYmISGJSDf5bkyxCREQyJ9Wrev6cdCFJ2zSjf6OX6T19VQKViIhkV6pX9ezmywemdCR6jOJn7t41qcJERCQZqR7xd6n92swuRSNsioi0Sk0andPdnyZ6aLqIiLQyqXb1XFbr5deIruvXNf3SZDrnIvXR5yIzUr2q5we1pquBjcDItFcjIiKJS7WPf1zShYiISGak+iCWPDNbbGZbzOwTM1tkZnlJFyciIumX6sndecCzROPynwz837hNRERamVSDP9fd57l7dfw1H8hNsC4REUlIqsG/1cyuNrN28dfVwLYkCxMRkWSkGvzjgR8BHwObgdGATviKiLRCqV7O+UtgjLvvADCzY4G7iX4hiIhIK5LqEX/BodAHcPftwLeTKUlERJKUavB/zcx6HHoRH/Gn+teCiIi0IKmG9/8G/tPMFhIN1fAj4FeJVSUiIolJ9c7dBWZWRjQwmwGXufvqRCsTEZFEpNxdEwe9wj521pQFjV5mcZevnkdEJGlNGpZZRERaLwW/iEhgFPwiIoHRJZmtWFPOM4DONYiELrEjfjM7xcxeNrM1ZvaOmU2O2481sxfNbF38vcdXrUtERNInya6eauCf3P104GzgJjM7A5gGLHH3vsCS+LWIiGRIYsHv7pvd/a14ejewhmgs/5FASTxbCXBpUjWIiMiRMnJy18zyicb2eQM43t03Q/TLATiugWUmmlmZmZVVVVVlokwRkSAkHvxm1hlYBPzM3T9NdTl3f9jdi9y9KDdXz3wREUmXRIPfzDoQhf5j7v6HuPkTMzsxfv9EYEuSNYiIyOGSvKrHgEeANe7+21pvPQuMiafHAM8kVYOIiBwpyev4BwPXAKvMrDxu+5/AHcDvzew6YBNweYI1iIhIHYkFv7u/RjSSZ33OT2q7ItJ4m2b0b9JyvaevSnMlkgkaskFEJDAKfhGRwCj4RUQCo+AXEQmMgl9EJDAKfhGRwCj4RUQCo+AXEQmMgl9EJDAKfhGRwCj4RUQCo+AXEQmMgl9EJDAKfhGRwCj4RUQCo+AXEQmMgl9EJDAKfhGRwCj4RUQCo+AXEQmMgl9EJDAKfhGRwCj4RUQCo+AXEQmMgl9EJDAKfhGRwCj4RUQCo+AXEQmMgl9EJDAKfhGRwCj4RUQCo+AXEQlM+2wXICLSkmya0b9Jy/WevirrdaRaQ2JH/Gb2qJltMbOKWm3HmtmLZrYu/t4jqe2LiEj9kuzqmQ9cWKdtGrDE3fsCS+LXIiKSQYkFv7svBbbXaR4JlMTTJcClSW1fRETql+mTu8e7+2aA+PtxGd6+iEjwWuxVPWY20czKzKysqqoq2+WIiLQZmQ7+T8zsRID4+5aGZnT3h929yN2LcnNzM1agiEhbl+ngfxYYE0+PAZ7J8PZFRIKX5OWcTwDLgG+aWaWZXQfcAXzfzNYB349fi4hIBiV2A5e7X9HAW+cntU0REflqLfbkroiIJEPBLyISGAW/iEhgFPwiIoFR8IuIBEbBLyISGAW/iEhgFPwiIoFR8IuIBEbBLyISGAW/iEhgFPwiIoFR8IuIBEbBLyISGAW/iEhgFPwiIoFR8IuIBEbBLyISGAW/iEhgFPwiIoFR8IuIBEbBLyISGAW/iEhgFPwiIoFR8IuIBEbBLyISGAW/iEhgFPwiIoFR8IuIBEbBLyISGAW/iEhgFPwiIoFR8IuIBEbBLyISmKwEv5ldaGbvmtl/mdm0bNQgIhKqjAe/mbUD7gcuAs4ArjCzMzJdh4hIqLJxxD8I+C933+Du/w08CYzMQh0iIkEyd8/sBs1GAxe6+4T49TXAd9z95jrzTQQmxi+/CbzbzE33ArY2cx3N1RJqgJZRh2r4UkuooyXUAC2jjpZQA6Snjr9x99y6je2budKmsHrajvjt4+4PAw+nbaNmZe5elK71tdYaWkodqqFl1dESamgpdbSEGpKuIxtdPZXAKbVe5wEfZaEOEZEgZSP4S4G+ZtbHzDoCPwaezUIdIiJBynhXj7tXm9nNwJ+AdsCj7v5OBjadtm6jZmgJNUDLqEM1fKkl1NESaoCWUUdLqAESrCPjJ3dFRCS7dOeuiEhgFPwiIoFptcFvZqeY2ctmtsbM3jGzyXH7sWb2opmti7/3iNvNzGbHw0SsNLMza61rZryONfE89V1ymnQNd5pZRfz1Dwnvi78zs2Vm9oWZ3VJnXU0aTiPNNTxqZlvMrKIx+yGddTS0ngzXkGNmb5rZing9t2VjX9RaXzsze9vMnstGDWa20cxWmVm5mZVlqYbuZrbQzNbG6/tupusws2/G++DQ16dm9rNU6wDA3VvlF3AicGY83QV4j2gIiJnAtLh9GnBnPD0ceJ7oPoKzgTfi9r8HXic60dwOWAacm+EaLgZeJDrZ/g2gDOia4L44DhgI/Aq4pdZ62gHrgVOBjsAK4IxM1hC/NwQ4E6jIwOeioX1R73oyXIMBnePpDsAbwNmZ3he11vePwOPAc9moAdgI9MrWZyJ+rwSYEE93BLpn6/+j1s/sx0Q3aqW8T1rtEb+7b3b3t+Lp3cAa4GSi4R9K4tlKgEvj6ZHAAo/8BehuZicS3TyWQ/Sf+HWiH7BPMlzDGcCf3b3a3T8jCtwLk9oX7r7F3UuB/XVW1eThNNJYA+6+FNieynaTquMo68lkDe7ue+KXHeKvlK/GSOf/iZnlER2g/Guq2093DU2VrhrMrCvRQckj8Xz/7e47M11HHecD6939g1TrgFbc1VObmeUD3yY6Ijre3TdDtKOJfmtCtIP/WmuxSuBkd18GvAxsjr/+5O5rMlkDUdBfZGadzKwX8D0Ov8kt3XU0pKH6MllD2qSrjjrryWgNcfdKObAFeNHdG11DOuoAZgH/DBxsyvbTVIMDL5jZcouGdMl0DacCVcC8uMvrX83sG1moo7YfA080dvutPvjNrDOwCPiZu396tFnraXMz+x/A6UR3EJ8MnGdmQzJZg7u/APwR+E+i/8RlQHVjamhkHY2qL8M1pEW66mjOetJRg7sfcPdCos/nIDPr19h1NLcOMxsBbHH35Y1dNl01xAa7+5lEI/velODPaUPaE3VBPuju3wY+I+qaaZQ0fjY7ApcA/6exy7bq4DezDkQ78DF3/0Pc/EncfUL8fUvc3tBQET8E/uLue+I/q58n6n/PZA24+6/cvdDdv08UwOtSraEJdTSkWcNppKmGZktXHQ2sJ6M1HBJ3KbxCI7oA01jHYOASM9tI1P13npn9W4ZrwN0P/axsARYTdU1msoZKoLLWX10LiX4RpCzNn4uLgLfcPaWu6dpabfCbmRH1ta1x99/WeutZYEw8PQZ4plb7tRY5G9gV/1m1CRhqZu3j/5ShRH1vGash/nO+Z7zOAqAAeCG1PdGkOhrS5OE00lhDs6SrjqOsJ5M15JpZ93j6GOACYG2m63D3f3H3PHfPJ/pM/Ie7X53JGszsG2bW5dA0UAykdNVXGvfDx8BfzeybcdP5wOpUakhnHbVcQRO6eYBWfVXPOUTdECuB8vhrONATWEJ0xLwEODae34geALMeWAUU+ZdnxR8iCvvVwG+zUENOvO3VwF+AwoT3xQlERy+fAjvj6a7xe8OJrjZYD/wiSzU8QXS+ZX/cfl2m62hoPRmuoQB4O15PBTA9W5+LWus8l8Zd1ZOufXEq0bmwFcA7WfxsFhJddbcSeBrokaU6OgHbgG5NyU8N2SAiEphW29UjIiJNo+AXEQmMgl9EJDAKfhGRwCj4RUQCo+AXEQmMgl9EJDAKfglWfDfo/7NovPsKM/sHMzvLzP4cDwT2p1q30l9vZqXxvIvMrFPcfnm87AozWxq35ZjZPIvGjn/bzL4Xt481sz+Y2b9bNPb6zOz96yVkuoFLgmVmo4AL3f36+HU3orGaRrp7lUUPxBnm7uPNrKe7b4vnux34xN3nmNmqeB0fmll3d99pZv8E9HP3cWb2d0TDb5xGNNzBdKJRGb8A3gXOcfe/IpJB7bNdgEgWrQLuNrM7geeAHUA/4MVoWBXaEQ0dAdAvDvzuQGfgT3H768B8M/s9cGjQrXOAOQDuvtbMPiAKfoAl7r4LwMxWA3/D4UNhiyROwS/Bcvf3zOwsovFSfkP0FLR33L2+x+nNBy519xVmNpZozBrcfZKZfYfoISXlZlZI/cNbH/JFrekD6GdQskB9/BIsMzsJ2Ovu/wbcDXwHyLX4Oapm1sHMvhXP3gXYHI/gelWtdfytu7/h7tOBrUTDWi89NI+ZnQb0JurWEWkRdLQhIesP3GVmB4lGAr2B6AE4s+P+/vZET556B/hfRE9L+oCoi6hLvI67zKwv0VH+EqLRI9cCc+P+/2pgrLt/EXcfiWSdTu6KiARGXT0iIoFR8IuIBEbBLyISGAW/iEhgFPwiIoFR8IuIBEbBLyISmP8Pg7bAJm56bFsAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.countplot(x='season',hue='toss_decision',data=df)\n",
"plt.savefig('F:\\Data Science projects\\EDA\\IPL/IPL_1.png')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### In some seasons, the probablity that toss winners opt for batting is high while In 2016, the majority of toss winners opted for fielding"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Maximum Toss Winners"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 15,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAF+CAYAAACbE0FPAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO2dd5hkVZn/P1+GDBKUkUUQBhEDq4g4KAhrwgwCBoIRFUXXAIquYlrMi666KkZWxDGAIqJgAGERUFSQGXKQHwqoKMKIiCgGwvf3x3tqurqmuqen77ndden38zz1VN1bVe85XV313nPeKNskSZIk3WOV2Z5AkiRJMj1SgSdJknSUVOBJkiQdJRV4kiRJR0kFniRJ0lFSgSdJknSUVWdysI022sgLFiyYySGTJEk6z5IlS/5ge/7g+RlV4AsWLGDx4sUzOWSSJEnnkfSrYefThJIkSdJRUoEnSZJ0lFTgSZIkHSUVeJIkSUdJBZ4kSdJRUoEnSZJ0lFTgSZIkHSUVeJIkSUeZ0USeiVhw6HdX6vXXHr5bSzNJkiTpDrkCT5Ik6SipwJMkSTpKKvAkSZKOkgo8SZKko6QCT5Ik6SipwJMkSTpKKvAkSZKOkgo8SZKko0xJgUt6vaTLJF0q6VhJa0raUtK5kq6S9DVJq7c92SRJkmSMFSpwSZsCBwELbT8EmAfsB3wA+B/bWwM3Awe0OdEkSZJkPFM1oawKrCVpVWBt4HrgCcDx5flFwF71p5ckSZJMxAoVuO3fAh8Cfk0o7luAJcCfbN9RXnYdsOmw90s6UNJiSYuXLl1aZ9ZJkiTJlEwoGwJ7AlsC9wHWAZ425KUe9n7bR9peaHvh/Pnzm8w1SZIk6WMqJpQnAtfYXmr7duAE4NHABsWkArAZ8LuW5pgkSZIMYSoK/NfAjpLWliRgV+By4AzgOeU1+wMntjPFJEmSZBhTsYGfSzgrzwcuKe85EngzcIikXwD3Ao5qcZ5JkiTJAFNq6GD7MOCwgdNXA4+sPqMWyIYRSZLcHclMzCRJko6SCjxJkqSjpAJPkiTpKKnAkyRJOkoq8CRJko6SCjxJkqSjpAJPkiTpKKnAkyRJOkoq8CRJko6SCjxJkqSjpAJPkiTpKKnAkyRJOkoq8CRJko6SCjxJkqSjTKmcbDI5Wa42SZLZYCo9MR8o6cK+258lvU7SPSWdJumqcr/hTEw4SZIkCabSkedK29vZ3g54BHAb8E3gUOB021sDp5fjJEmSZIZYWRv4rsAvbf+K6FS/qJxfBOxVc2JJkiTJ5KysAt8POLY83tj29QDl/t41J5YkSZJMzpSdmJJWB/YA3rIyA0g6EDgQYPPNN1+pySVBOkmTJBnGyqzAnwacb/uGcnyDpE0Ayv2Nw95k+0jbC20vnD9/frPZJkmSJMtYGQX+XMbMJwAnAfuXx/sDJ9aaVJIkSbJipqTAJa0NPAk4oe/04cCTJF1Vnju8/vSSJEmSiZiSDdz2bcC9Bs7dRESlJB0m7etJ0l0ylT5JkqSjpAJPkiTpKKnAkyRJOkoq8CRJko6S1QiTVkknaZK0R67AkyRJOkoq8CRJko6SCjxJkqSjpAJPkiTpKKnAkyRJOkoq8CRJko6SCjxJkqSjZBx40mkyzjyZy+QKPEmSpKOkAk+SJOkoU23osIGk4yX9XNIVknaSdE9Jp0m6qtxv2PZkkyRJkjGmugL/GHCK7QcBDwOuAA4FTre9NXB6OU6SJElmiBUqcEnrAY8BjgKw/U/bfwL2BBaVly0C9mprkkmSJMnyTGUFfj9gKXC0pAskfU7SOsDGtq8HKPf3bnGeSZIkyQBTUeCrAtsDn7b9cOCvrIS5RNKBkhZLWrx06dJpTjNJkiQZZCoK/DrgOtvnluPjCYV+g6RNAMr9jcPebPtI2wttL5w/f36NOSdJkiRMQYHb/j3wG0kPLKd2BS4HTgL2L+f2B05sZYZJkiTJUKaaifla4CuSVgeuBl5CKP/jJB0A/BrYu50pJkmSJMOYkgK3fSGwcMhTu9adTpIkSTJVMhMzSZKko6QCT5Ik6SipwJMkSTpKKvAkSZKOkgo8SZKko6QCT5Ik6SipwJMkSTpKKvAkSZKOkgo8SZKko6QCT5Ik6SipwJMkSTpKKvAkSZKOkgo8SZKko6QCT5Ik6SipwJMkSTpKKvAkSZKOMqWGDpKuBW4F7gTusL1Q0j2BrwELgGuBfWzf3M40kyRJkkFWZgX+eNvb2e515jkUON321sDprESn+iRJkqQ5TUwoewKLyuNFwF7Np5MkSZJMlakqcAOnSloi6cBybmPb1wOU+3sPe6OkAyUtlrR46dKlzWecJEmSAFPvSr+z7d9JujdwmqSfT3UA20cCRwIsXLjQ05hjkiRJMoQprcBt/67c3wh8E3gkcIOkTQDK/Y1tTTJJkiRZnhUqcEnrSLpH7zHwZOBS4CRg//Ky/YET25pkkiRJsjxTMaFsDHxTUu/1x9g+RdJ5wHGSDgB+Dezd3jSTJEmSQVaowG1fDTxsyPmbgF3bmFSSJEmyYjITM0mSpKOkAk+SJOkoqcCTJEk6SirwJEmSjpIKPEmSpKOkAk+SJOkoqcCTJEk6SirwJEmSjpIKPEmSpKOkAk+SJOkoqcCTJEk6ylTrgSfJnGTBod9dqddfe/huLc0kSZYnV+BJkiQdJRV4kiRJR0kFniRJ0lGmrMAlzZN0gaTvlOMtJZ0r6SpJX5O0envTTJIkSQZZmRX4wcAVfccfAP7H9tbAzcABNSeWJEmSTM6UFLikzYDdgM+VYwFPAI4vL1kE7NXGBJMkSZLhTHUF/lHgTcBd5fhewJ9s31GOrwM2rTy3JEmSZBKm0pV+d+BG20v6Tw95qSd4/4GSFktavHTp0mlOM0mSJBlkKivwnYE9JF0LfJUwnXwU2EBSLxFoM+B3w95s+0jbC20vnD9/foUpJ0mSJDAFBW77LbY3s70A2A/4ge3nA2cAzykv2x84sbVZJkmSJMvRJA78zcAhkn5B2MSPqjOlJEmSZCqsVC0U22cCZ5bHVwOPrD+lJEmSZCpkJmaSJElHSQWeJEnSUVKBJ0mSdJRU4EmSJB0lFXiSJElHSQWeJEnSUVKBJ0mSdJTsiZkks0j23EyakCvwJEmSjpIKPEmSpKOkAk+SJOkoqcCTJEk6SirwJEmSjpIKPEmSpKOkAk+SJOkoqcCTJEk6ylSaGq8p6WeSLpJ0maR3lfNbSjpX0lWSviZp9fanmyRJkvSYygr8H8ATbD8M2A54qqQdgQ8A/2N7a+Bm4ID2ppkkSZIMMpWmxrb9l3K4WrmZ6E5/fDm/CNirlRkmSZIkQ5mSDVzSPEkXAjcCpwG/BP5k+47ykuuATSd474GSFktavHTp0hpzTpIkSZiiArd9p+3tgM2IRsYPHvayCd57pO2FthfOnz9/+jNNkiRJxrFSUSi2/0R0pd8R2EBSr5rhZsDv6k4tSZIkmYypRKHMl7RBebwW8ETgCuAM4DnlZfsDJ7Y1ySRJkmR5plIPfBNgkaR5hMI/zvZ3JF0OfFXSe4ELgKNanGeSJEkywAoVuO2LgYcPOX81YQ9PkiRJZoHMxEySJOkoqcCTJEk6SirwJEmSjpIKPEmSpKOkAk+SJOkoqcCTJEk6SirwJEmSjpIKPEmSpKOkAk+SJOkoqcCTJEk6SirwJEmSjpIKPEmSpKOkAk+SJOkoqcCTJEk6SirwJEmSjjKVjjz3lXSGpCskXSbp4HL+npJOk3RVud+w/ekmSZIkPaayAr8DeIPtBxO9MF8taRvgUOB021sDp5fjJEmSZIZYoQK3fb3t88vjW4l+mJsCewKLyssWAXu1NckkSZJkeabSE3MZkhYQ7dXOBTa2fT2Ekpd07wnecyBwIMDmm2/eZK5JkqwkCw797kq9/trDd2tpJkkbTNmJKWld4BvA62z/earvs32k7YW2F86fP386c0ySJEmGMCUFLmk1Qnl/xfYJ5fQNkjYpz28C3NjOFJMkSZJhTCUKRcBRwBW2P9L31EnA/uXx/sCJ9aeXJEmSTMRUbOA7Ay8ELpF0YTn3VuBw4DhJBwC/BvZuZ4pJkiTJMFaowG2fDWiCp3etO50kSZJkqmQmZpIkSUdJBZ4kSdJRUoEnSZJ0lFTgSZIkHSUVeJIkSUdJBZ4kSdJRUoEnSZJ0lJUqZpUkSdJPFsuaXXIFniRJ0lFSgSdJknSUVOBJkiQdJRV4kiRJR0kFniRJ0lFSgSdJknSUVOBJkiQdZSodeT4v6UZJl/adu6ek0yRdVe43bHeaSZIkySBTWYF/AXjqwLlDgdNtbw2cXo6TJEmSGWSFCtz2D4E/DpzeE1hUHi8C9qo8ryRJkmQFTNcGvrHt6wHK/b3rTSlJkiSZCq07MSUdKGmxpMVLly5te7gkSZI5w3QV+A2SNgEo9zdO9ELbR9peaHvh/PnzpzlckiRJMsh0FfhJwP7l8f7AiXWmkyRJkkyVqYQRHgv8FHigpOskHQAcDjxJ0lXAk8pxkiRJMoOssB647edO8NSuleeSJEmSrATZ0CFJkpElG0ZMTqbSJ0mSdJRcgSdJMmfp+go/V+BJkiQdJVfgSZIkLdH2Cj9X4EmSJB0lFXiSJElHSQWeJEnSUVKBJ0mSdJRU4EmSJB0lFXiSJElHSQWeJEnSUVKBJ0mSdJRU4EmSJB0lFXiSJElHSQWeJEnSURopcElPlXSlpF9IOrTWpJIkSZIVM20FLmke8EngacA2wHMlbVNrYkmSJMnkNFmBPxL4he2rbf8T+CqwZ51pJUmSJCtCtqf3Ruk5wFNtv6wcvxB4lO3XDLzuQODAcvhA4MqVGGYj4A/TmmDKH2XZKT/lp/yVk7+F7fmDJ5vUA9eQc8tdDWwfCRw5rQGkxbYXTue9KX90Zaf8lJ/y68hvYkK5Drhv3/FmwO+aTSdJkiSZKk0U+HnA1pK2lLQ6sB9wUp1pJUmSJCti2iYU23dIeg3wfWAe8Hnbl1WbWTAt00vKH3nZKT/lp/wKTNuJmSRJkswumYmZJEnSUVKBJ0mSdJRU4B1D0lqSHjjb85jLSNpQ0razPY/pImkVSevN9jzmEpLWmMq5lWWkFLikvSXdozx+u6QTJG1fUf46klYpjx8gaQ9Jq1WUf7Ck9RQcJel8SU+uKP8ZwIXAKeV4O0lVIn8krSnpkPKZf0PS6yWtWUN2kd/1z/7MIv+ewEXA0ZI+UkHuJZIunujWfObLxjmmzH8d4HLgSkn/UVF+q59/GWM3SW+S9J+9W0XZHyzzX03S6ZL+IOkFteQDP53iuZVipBQ48A7bt0raBXgKsAj4dEX5PwTWlLQpcDrwEuALFeW/1PafgScD84v8wyvKfydRwuBPALYvBBZUkv1F4F+BI4BPAA8GvlRJNnT/s1+/yH8WcLTtRwBPrCB3d+AZxEX5FOD55fY94PgK8ntsU+a/V5G9OfDCivJb/fwlfQbYF3gtkUS4N7BFLfnAk8v8dydyXB4ANL7ASfoXSY8A1pL0cEnbl9vjgLWbym+SidkGd5b73YBP2z5R0jsrypft2yQdABxh+4OSLqgpv9w/nfiRXyRpWMbqdLnD9i11RS7jgbYf1nd8hqSLKsrv+me/qqRNgH2At9USavtXAJJ2tr1z31OHSvox8O5KQ61Wdjx7AZ+wfbukmiFobX/+j7a9raSLbb9L0oeBEyrK7+0Gnw4ca/uPlab/FODFRKJj/47tVuCtTYWP2gr8t5I+S/xIvldsRDXnKEk7ESuc75ZzNS9iSySdSnwJvl/MQXdVlH+ppOcB8yRtLekI4CeVZF8gacfegaRHAT+uJLuI7PRn/y4i5+EXts+TdD/gqory1yk7TwAkPRpYp6L8zwDXFpk/lLQF8OeK8tv+/P9W7m+TdB/gdmDLivK/LennwELgdEnzgb83FWp7ke3HAy+2/fi+2x62m1+AbI/MjdhSPAvYuhxvQmxtasl/DJEt+uZyfD/g4xXlrwJsD2xQju8FbFv583kfkQV7HvBeYM2GMi8BLgauIH5w1wLXlMeXVpz7Y7v62ROJaq+vNdcJxngEYVu/ttwuBLav+NnsM3BOwKpd+PyLvHcAGwDPBn4PXA+8p6L8NYANgXnleB1g48ryn0esuv+zd2sqd+QSeRR1xjemb3Vm+9eV5B5uu5rjpk/2pI5W2+dXGGMe8H3bNeyu/XIntSO6bPFHlZn47Ms4ZzhWUq2iiA6R7Vsqy/2h7cfUlDlkjE0Ju3T/b/eHLYyzBrFwqfYZSTrf9vYrOtdA/inALcASxkzF2P5wE7kjZQOX9FrgMOAGxrZfBhqHbNm+szgT2mCyf4KBJzQdoMz/Nknr1/ziDipoSfcGqkWf9Mn9NstXq7wFWAx81vZ0t6utf/aFn0j6BPA14K/LBqh0gYCIsiAcyWv27K+2a9nAT5P0Rpaf/x9rCJf0AcLJeDljCsqE87qJ3GdN8hxuaIaQ9C/AphQnI2O2/PWo4GTsYzPbT60oDxixVHpJvyBqit/UkvwPA1sDX2f8l7imM6Q1JB0H7Aicxvj5H1RB9h6EMrwPcCOxkrrC9r82lV3kf4yITji2nNqX2AqvBaxnu2ZERHUknTHktG1XuUCUKIu1gccDnwOeA/zM9gGV5F8z5LRt36+S/CsJk8k/asjrk3v0JE/b9ksbyt+fcDIuJBYTPW4FvlBLN0g6knDeX1JD3jK5I6bAzwCeZPuOluQP+zLU+BI8wfYPJlotVPwS7D+B/EUVZF9ErFb/z/bDJT0eeK7tA1fw1qnKX24L3zsn6bIaFwpJDyHa+y3bQdj+YlO5M0GJrti2735d4ATbVWOp20LSycDetv8y23OZDpKebfsbLcq/HLg/4V/6B7HSt+1G1oWRMqEAVwNnSvou8UcCYLtxwkSR85IacobwWOAHRDzvcsNSKdzJ9iJF6d4HlFNX2r69hmzgdts3KbL0VrF9RtkW12K+pM17/gxJmxNdSQD+2VS4pMOAxxEK/HtEr9azifj2xkjaGHg/cB/bT1P0f93J9lE15LN8lMVNVIyyKCGE/0448gHOJExXtb4/twEXSjqd8b/dxrvDHv0mpj75tUxM3ykRXgsYb8OvJf9pleSMY9QU+K/LbfVyq4qkBxCJQRvbfogiHXoP2+9tItf2YeXhy2zfOemLG1CC/xcRUQoC7itp/0qOoj+VVd8Pga9IuhGouRN6A3C2pF8Sc98SeJUiM7DxDoIwOTwMuMD2S4rC/VwFuT2+ABzNWAz4/yPsybUU+HckbQD8N3A+ceH/30qyIb73qwGfKscvLOdeVkn+SbTYD2AiE1PFIU5kzMlY1QwE4+L96/qYaoXJdOEGnEVkMl7Qd65mqNyviTq/u1LMU5Xnv4RIuOkdPwBYUkn2OkS43KrA/sBBwL0qz38NQsluR8PwxyGyf9b3Ga1HXCQuqyj/vHLf/925sPb/uO9zWr+yzIumcq7hGKsDDym31SrLvnjgfl3g1Iryq+mBCeTvQeQN/JWxMN3G38+RWoGX4Pk3sfw2qVYkwdq2fzaQYVVzlflAwozyauAoSd8Bvmr77EryV7O9rCm07f+nSvVEbP+177DGingYj2Bsi7ptiSKoZaNeXFaw/0so8b9Qd4X2V0n3okTSlKSnmmFsawKvAnYpY5wt6dOefnTOIHdK2sr2L8t496MvnK0pLe8OYSypphUTExFl9FBXdjL28R4iAGGcj6mp0JFS4MBXiG3p7sAriZXg0ory/yBpK8Z+hM8hEgKqYPtvwHHAcZI2BD5GrPrnVRpisaSjGKtR8nxCWU0bSWfb3kXSrQxpSk38UP7b9qeGPLcy43wJ2IpIUOkPM6uiwG2/qjz8TIm5Xc92tWJQwCGEiWArRYr7fGIbX4svEpEPR5Tj5xL/570ryf8PojzC1YSC3YKoV1KLDxNJd1fCMnPlscRFuwbfbtnEtAvw4hKtU83J2EcrPqZRi0JZYvsRPU98OXeW7cdWkn8/wsTxaOBmYivzAtvX1pBfxngsESL3NCJb8muu5N0uCQyvJr5sIuzVn3Ll0K2BMe8F/MR2oxK2kq4gCiq18oWTdDxhoz7Zds0U7v4xViV2WaKuAxlJF3l8LZqh5xqOsQZj8/95ze9N/292snPTlL0KsKPtn5TjNhJ5hia0uVIim6T/I+rQ/BfhvL8R2MH2oxvJHTEFfo7tHSV9H/g40eX+eNtbVR5nHWAV27dWlnsNscI8DjhpwCwx8miCLFhJm9hutFOR9HXgoKZyJpH/RGJFuSMR5/8F2z+vKH9YiOgtwCW2b6wg/wvAZ2yfU44fBezft7OYrtyZCnH9PLEq7t8drupKkV+Sfmp7pxqyVjDOOCejK2SBF7nrEGYgEZ/N+sBX3DDnZdQU+O7Aj4D7ElvJ9YB32W7k3ZZ0yGTPu1KYoqT1HCUpqyLpEoabNwCotMoZmgVbawtZYvy3I+zS/WFme9SQ3zfO+oT54W3Ab4ht9pebrpZLaOtOQC+h53HAOYQj+d22p1V6t+9/uxqxOv51Od4CuNz2QxrO+122D2srB6JvnFZ3h5LeRdTsOaGNXZxaTmRri5FS4G1RYoQhfiA7MBbu9Azgh7arhFK1FaY40fauR41tntrPgh1qBrN9VsUx7gW8gAiR+x3hU9kFeKjtxzWU/W0iTPSGcrwxY2F4P5yuop2h/+0qwHNsH9dU1mxRfDTrEP6TvzFmo67SWUgtJbJN4mOqMv+RUOCS3uSoD30EQ1aarpQMoCh3+eye6URR8vLrrlSjQNJZhLPos7YfXs5d2nQVNROo5SzYtpF0AvAgYgv/hX5TjaTFthc2lH+J7Yf2HYswnzxE0gW9/3dTWtzCt1LMStJxtveZaJdY0QnYKr3vSFHkD7d9l6Sf2X7kbM9tMkYlCuWKcr940lc1Z3PGZ/39k3odbaDlMMUSunYE0S1ndSK65a+VViGtZMG2vQLp4xO2fzDsiabKu/CjEhb69XL8bKKu9jqUDklNmGgLT4TU1qCtYlYHl/vdG8qZlHLBfD6wpe33SLovsIntWqGirSayKVrxDXJrY9PeKKzAZwpJbyOaRXyTUCbPBI6z/f5K8k8GXkOs6rcvYYoH2K6SRitpMbAfoUQWAi8C7m+7cYeYPjPTOGy/q6nsScZco6KNdDBV/CzCKVgzUuTZjNl4zwa+Ucse29YWvk9+q8WsJhjzxx7fZaiJrE8Tvpkn2H5wCdM91fYOleS34mTsk38t4du7uYyxARHCfCPwctvTCgceCQWu4aVGl1HT0aWoH/1v5fCHtqu19Wo7TLFvm9cfZvmTpqFIbSLpHbbfM+T8ekSkzuMqjfM5whHYS0J6IXBnDf9GsSFf3KYprM0tfJn/3ra/1nymKzXub2zft5Ks88uiaJm5qnaYZZsoSgF80/b3y/GTgacSEWsfs/2o6cgdFRPKh8r9s4B/Ab5cjp9LZHY1ohcdUrYx1/bLlHTPCttIAGxfDTyxrTBFIgttdaJo0AeJK3iVtlvFBj7Mhtk0C/bfJL2vf5egqMH8fer2NNxh4Mf8A1Xq6VmU6UXqK8bVAq1t4cv8X02YT2aSmqvD2xVhrr0kvPlUaNk2gya+hbZf2Tuwfaqk99s+pETwTIuRUOC9SARJ7xlwtHxbUo1U3GMIG90ShvyTiPZe02aiMEWNFeWvEqZIrCrnEWaa1xNbsmdXkv3GvsdrFrk1FMgewPGSPlK+rFsDJxPZnZ+tIL9Hq6niRHu/yyT9jPE25Fq7wz2J6IrXM7aFr1UJD1qygWvihgsiar3X4uOE6fPekt5HZMG+valQ27uU+3s0lbUC/ijpzcBXy/G+wM3lojTtC9FImFB6KLL1disrWSRtCXzP9oNnd2aTM1NhijONKmXBFvv0V4lGtDsBr7P9zaZyB8bYlcjEHJcqbntYI4bpyG8tDFIttcsbGKMVG7gmb7iAGybySNrM9nXl8YMoheKA0wn/z7ebyO8bpxUnY5/8jYg8i17j6rOJC/QtwOa2fzEtuSOmwJ9K2JCvLqcWAK/o2Y1aGO+BwBttv7ySvLbDFIeFavXakr23icNl4Au8ClHD4uNunkLf252sRhQq+xF9bbYq7k56ySTLUsWJbeuPa8lvE0knAS905V6YXUfR6ecpg34kSS8F3uZKWdptORmL7HnAItsvqDDVcYyECaWH7VPKFvtB5VSVeg2KhJoPESFa3yJC8T4FPIrJeyquLG2HKZ5MmAWOKcf7EV+2W4h61cMaSkyV/i/oHYQDtkY7r/6t6ceHnGtE+XHsQ/Q1PNn2xYqM3k8TW/ha8dlthnBCREBcIql6u7we6mbHotcT5p+n274KQNKhhJmpSo2kwilM7GTs6Ypp4ehnO1/S6rYbNy/pZ6RW4ACSHs3yXTEafckknUv8oH9K/FPeRCjBd7heuc6ZCFNcLiyrd04DiSZzBUUNkfsSKfqPAn5F1EN5i+1vVRxnWAjn1rbfWkl+a+3yivyhHYts16yo2ArFPPZZohjUywgz5e62b644xnLJXn2RQRfa3q6h/M8C2xPm1f4LdKMd6EitwNVeydE1bH+hPL6yOHMOdeXuObbfV2LBe2GKL6kZpgisK+lRts8FkPRIorA9TNPhqCiadCTxuV8CvNT2FZO/a6RYSDTTvUtRU/sPhG3097UHsv0LSfPK9+ZoST+pKHuRpLUIe+iVK3zDytNqxyINiekfdm462D5d0ouJNnA/AXatufAqtOJk7ON35bYKFXegI6XAiR9jGyVH15T0cMLcAFHsf1uVMBHb51cca23gz7aPLtumLW0PcyBNh5cBny/hZgL+DLyshC3+1zRlfpKIQPkhETHyUeApFeY6U/zTpXys7b9L+n9tKG9aDOEEkPQMwsy3OrClpO2IIlm1olz+Vi5ydyhi8G+kYfTVAD8lVpgrOrdS9IX3iehUtCtwY/nt1gzzex7hZOzt2s4u53omuka4JMRJWscVq5SOlAlFLZUcLTHOE+EKsc69cQ4jLkIPtP0AReeQrw+aPSqMsz7xv6uRwn2+7e0nOq6BWiymJOk2oOfBF7GT+AXULcivKDp1A6FgX0+E+X1qutEDQ+QvITIxz/RYoko1s5ikTwFvJcxAbyAWMRdWiBL5F8L/8GVC4fUWSesRmbAPmnva1zUAACAASURBVOi9o0KbTsa+MXYi+qeua3tzSQ8jAjQalQsetRX4RsDlJda2WslR249vOrEp8kzCaXZ+Gfd3JRKlCiXK4tkUH0FfnHmTeOENBmJ5xx27Qr3osvJ7DeEQqs2MhJh6rCrg34E2ygvcYfsWja+j03h1JWkvoiFHWx2LngK8GNgM6Lfn3kpcMEaeNp2MffR2tieVMS+S1Li42Kgp8HfO9gQa8k/bltTLFqu2xS600Tn7LMZHr/Qfm3rZkq0kkrhSx5QVIWln4vu5BeMd7LXMEJdKeh4wr0RiHUTYe5vyAuCTZafy4yLzx5WUd8/JukjSs12p89QscS3w4xLOWc3J2I/t3wxcoBv74EbKhNJ1ioLaGngSYZN+KXCM7SMmfePU5XeiNO0w2kokmSkk/ZwwnSyh74fXJPZ+QP7aRBOKJxNmiO8D76nlrFMkxe1E1OnZiQh5Pc/202vIL2PsxvINyWtmk7aGWi7mpmj59xHgE0SU1EFEnsJ+jeSOggLXxA11azsqWqM4VTYjYtiX/Qhtn1ZxjCOBI9xe5+xkAiSd62kWHBoVFJmMOxNKfEfgxlrmRUWxprWBxxPRLc8Bfma7Ri5Bbzfbc8Q+gPidneyK1SZ749R0MvbJ3Yhocv5EIhLl+8DBTRcAI6HAZwpJp9vedUXnGshfYrtWF+5h8i8H7k8k2bTRObs1ygrzECJM7sBiJnig7e/M8tQmRVG9EiISYR5hUur3zzSKYFLLlTglvZVYcc8HriTawJ1DVFesFkarUiGz735dov3ZkyvJX0KE525IzH8xcJvt51eS34qTsW1GzQbeCiU+eG1gI0Ud4X5P+X0qDnWOpB1sn1dRZj9V6orPEkcT5ode6dvriKSYKgp8iI26d3FraqIZzNTtT/YwETnShFYrcRIJR38hPuefAOe6nXT9nqnnthJ9dROwZUX5sn2bpAOIXegHJdXMsWjFydhDUVztY8TOx0SI5etd6j5NlzmhwIFXAK8jlPUSxhT4n4k46Fo8HniFpF8RjpCqK+Sew04DbbeaoImryfXGrOXE3Mr2vpKeW+T+rReHX4mjGGKjbkrbEUxuuRKn7Qcp6tw8msjEPLSsji8iolMmLUa1Enxb0gbAfxNRWCYaStdCZZX8fMZKPFTVX204Gfs4htA1zyzH+wHH0iBFH+aIArf9MeBjkl5by6E4Aa2ukNVO263J6qfUjEL5pyLTsBehsxX1ImkAbrF9ckV5wLJiXLfYPmrg/GuBebY/Wmmo+ZLu5/GVOOfXEFwifb5TwgcfQXQtegXhZG+swEuc/+klL+EbitZza1Ze6R8MvIWoV3JZWdFWqTRZ+I2ijIdLwtZBjLV6rIFsf6nv+MsltLax0KYyOoVaqLUyZIy2GtO22narTSQ9iajfvA1wKuFMe7HtMyvJP5x2bNSXAtsPxgeXmPzzKiYKDavEeaDtUxvK3YNYfe9MXOgvI0wpPyFW4EubyO8b56e2d6oha4jsecDhtv+jDflljFacjH3yDyd6p36VWMTsS2SWfhKmH047EgpcM9QVQxPUWnG9rvdDV8i2qzSmVQtttyQdAbzVA92DSsTCJ1yxRrWkexE2QAHn2P5DRdnDVmN2wyzbybIhJ3tummOtQf1KnCdQYr+BJW0lqkh6F3Ax4bisrlQk/aDp/3I2mSCMtse0fTUjYULxzHXFaKvWSo/3EApq3Aq5ovw22m79nqjv8Q7bx5RokXcSld/e3FD2II8lCtqbqA9eralDm7ZqSRvbvmHwXOUxFgOfB451xSp7tif1cVTkEKI2zB2Ses2Ba4YAX1CSbL7O+ESbKia+tpyMPWzXdOguYyRW4IO0aIJopdZKn/zWGtMW+esQbbdWoWLn7GJv/QRRJe0+RMr7e23f1mzG48b4FBECeWw5tS/wS9uvrjhG9UQSSS8i7KFvoJRIIOzIHwQ+6XrlXu8PvIT4XBYTtulTW1xsdAoN7/xj2y+tJP8cwpzR+37uB7y2Vux/+R4tR1Pz7UiswHu05KTrj7W9By3UWumjt0L+EZUb0wL0JRjcJem7wE2VfuA9GasSF4crairvwmOBh/TmK2kRUb62ChMlkjSVa/uLkpYS7a8eQnxWlwGH1XSaOopivU3SO4j+rZ8n/s+fJ7qWV2m83SYlRHdrxl9Aa/S0bdyabQq04mTsY4e+x2sSVRXPp2mpbNsjcyNCm+5F1CyG+DEeWUHuYye7VZz/OoQCXBXYn1i53auC3B2JWsgnEMWyLiVMHzcCT20o++1E9b59y/GmwPFETZRtKn42JwBb9B1vQZgLasm/eOB+XWIFO+vf65X4G7YF/odIuPk4EWL2BqJqYA35axHJU23M/WXEBflmIjrkb8APKsp/ANEH89K+z+rtFeUfDhxKOI+3IJq+vAO4J3DPFj6v9YGTGstp45/Z4I9aXO4vAlYpj3822/NaiflvQFxpdwDWr/m5EOn5e5cfyI7l/IN6F7sGsj8G3GPI+acRK/Faf8NZwG3lQnQmYcf8PyJxovkXORJUILL07kN4+K+a7e/ESsx/SVFQzyMakPQ/d0IF+c8oF4ZryvF2NT73PvmXECvLC8vxg4CvVf7+PLL/+95T5pXkXzPJ7eoW/t+r1fh9jZQJhZZNEEOiXGCsKfAbPE2HRYkbPZJw/F1DOHC2kPRN4JVu7vlf1SWcTNK7bZ8DYPvnTXNhbB88wfmTJf2gkfDx/GdFWcP4zpBEkmodZ2aAvSf6/rmOI/KdhAI8s8i8UNKCCnJ7/N3RUKPXiefniqbhtVjb9s8Gvu81zZOtOBl7aHzJhHlEGeTG5ZVHTYHvSaTkvo4xJ13NamYfIdoaHUMo2f2I9OUrCZvj46Yp9+3EFfW+Ht+R/pPENuwdjWY9vqXT3waea83J5QphbH2yzqolawL57ykP20okaYWSKNR7vNzzrlfOdFi98ZpcVy6g3yJKB99M/NZq8YeS/NXzoTyH6IpUhbacjH18qO/xHcCvbF/XVOjIRaEoOnw8kvhHneeK7bE0pKKcpHNs7yjpItsPm6bcS4FHesDxV3YT57hhCVhJdzKWmr8WYYqgHK9pe7Um8meCgd3P6sQFr2ZX91aTtDTQTKNPftMol/4ypq8gmvcuw/XKmR5FmGgOJf6Og4DVbL+yhvyBsR5LLL5OqbD77Mm8H7HLfTRhRrwGeL4r1YMv+RA9ljkZXbnpc8mFeAzwa9tLmsobqRW4pJcRW+0fEMrpiGIy+HylIe6StA/hpIOIVOjR5Ep216DyBrD9F5XmDk2wPa+pjNnGAzH+ik4xVcIri7y2GmL3aKOZxjgFLWmvWgp7CK8l6o3/gwiV+z6Rt9AISevZ/rOi3kqPXnTROpLudJ2qhxvafmIJpV3F9q2KPqJVFLjt1/YfK9oWfmmCl0+Zshs81PalkjYhzHuLga0kHemmpRhqG+cbGvavpC9qg4hIubKi/PsB3yY6ly8tj+9PrGp3aSD3IqLM5T2H3C6a7c91in/DwUR1RhGFoc4HntzymOdUlHUFZUfZ0lyrOcwmGeP82f4eTGPO3yn31xBlAAYdgEuB99f4bICH9h3vR3Fct/R3VXEyApf1PX4r8MXy+B6UiKkmt5FagRMlRvtTum8FflNLuMNJNFHxprMbiF6f8VUOxw3bQO5M8lLbH5P0FKKI0ksoySQ1hGt81cNViKzYmp/NpYQ/o5UkLeAnkh7qjjbTUDRBeCPLm4Aapafb3r3cD3UCljoml9K8P+ZzgOMlPZ/I5n0REZlVhbacjEB/w4ldKRUaHTuIu4a/ZeqMhALvc+T8FjhX0onEh7knFZIxJL3JUT/4CIYoDTeshWJ7QZP3jwi9i8/TgaMd9ZBrerz6L5x3ELWu92wqdAaTtHYBXlxqWlRrpiHpEsa+k/eX1OtVWbtZx9eBzxCROTXLpAKgCWpnOxJ5Gjeetn21pP0IJ+lviN3hoEO/Ca04GYkqh68lFqfbA6cAKCpzNvZdjYQCJ358AL8stx4nVpLfKwu5uJK8WUHttpVaIulUogj/W0oUTeMVQg+3l0n3oRW/pAptlQrevSW5g9xh+9Mtyu+vFLgm4d9YQsOGFwMXOAiz5DxioUetC5zH6rL3nIx/J5RuUw4gIumeSCTL/amc35EapXyLPSbpAGqxrZSipvN2RNLCn8oXeVM37F4u6eXAmbavKiv6o4goiF8R5WQblXvtG+cDtt+8onMVxmmlTk/bSHonkbn7TcbvUFpJ0Zd0X+CDthsVc5O0xWTPu2EUymRORiILvFa991YYKQUuaSHhKd+C8Xa6WjWXW7EDzhSSzre9fdmSrVXMQhfYfngF2dsPOX0LsZWcdsJECbF8uO3bJT2PSA1/MlES4DDb/zZd2QPjnG97+4FzF1f87rRaKrhtNLycqd285dxE44lw0lUpt1tiwK+z/Q9JjyNS6b/Yt6KdrtzLev9DRf/QB9l+UdmB/riiCasVRsWE0uMrxFbsEipu3/toxQ44QSjVMiqucqT22kp9irDRXUzYXx9SHt9L0is9/cYCd/SZeHYnfnQ3Af8n6YNNJy3p34FXEWFZ/buFexA1sGvRdqngVpnIyViLAf9Sbzd3UcUhvgEsVFRtPIoowXAM4bNpQqtOxrYZNQW+1PZJLcpvyw54DKGclhBf4n7nn4nwxRq02VbqWuAA25cBSNqGuJi+hyhENV0FflfZmt5M/EDe1/fcWtOe7RjHACcD/0UkqfS4tbJ54HbbN0laRdIqts+Q9IGK8pehqOp336bmqwGZbWca9vuX7iAKldW8gN5l+44SzfRR20eoTlPjVp2MbTNqCvwwSZ8jMsb67XS1+jJ+W9KrqGwHXFEoVQ1KONYz+qMqSlhklW5CxNbxsj7Zl0t6ePH+N5H7n8SPex5RPKl3gXgsY+3Dpo0jXf4WSW8Hft+/xZbUeIvdRxvNNJYh6UxgD+I3eSGwVNJZtg+Z9I1Tp51ypgVXqos+CbcrGmK/iLGIphoKtlUnY49ivv00sLHth0jaFtjD9nsbyR0xG/iXiciKyxgzodj1ira3bgeUtCnL2/Cr1ERWi22lJH0N+CPRsw+iscBGwAuBs23vMNF7pyB7VaLi4c1959Yhvn9/mf6sx41xIRFbvoDIMjyJKJ3adIvdk99KM40++RcU08zLiNX3YTVt+EPGWx/4UtMwS0l7ApvZ/mQ5PpexZsxvtv31ZjNdNs42wCuBn9o+VtGEZF/bh9eQ3zaSziJ2tJ/t+awkXeqGZTZGbQX+sFpOj34krWb79mEr5GKGqDXOBwjFdznj07mrKHDabSv1YsKW/DrCBHQ24fC9najLPm2KE/TmgXN/neDl06WtLXaPewPX2/47sKhssTcGqihwYNViatqHcOS3zW1E84WmvInIiuyxBrHaX4dYwVZR4LYvp2+3afsaooZ3V2ilmuKoKfBzJG1T/lk1OUnSnl6+s/i2xEptQaVx9iJWfdVqZQxwT0Jh9K/CTdioG1GSIj5cboNUWSW3TFtb7B5fJwop9biznJv2zmSAdxE7h7Ntn1cWFldVkj2YabgKsA11Mg1Xt92fLX122ZXcVHYtVSi752FJeK1E0bRAK9UUR02B7wLsXzvbjXAunizpGS5Fp4qd9MtEyngtriaURisKvMVkGCTtTNSMHjT/dOUH8hJii/0+29eULfaXK8pftX8BYPufijrwjSn+jfv2f8+Lf+PZNeQX2so03LD/wHZ/G7L51GNh3+M1ieYmQ6O+RpRXE9UUHyTpt0SdmBc0FTpqNvChQftNg/WL7LcBTyUy6p5CtK56lu3G2Zl9IVSbAg9jeSdsFUdjW46QIvvnwOuJi92yEMumNl5JD3IU9x8WZ44rJfK0jaTTgCN6UVLF9nuQ7V0ryT/DdiNT1QRy1yQubPcnwnOPahLXP0T+V4hErf8dOP8K4HFumMizgrHPtr1LJVmt/bYGxllWTbGKvBFT4JsPO+96XekPIWouC3i6o5FsDbn7T/Z8LQ99W46QIme5Wuk1UJTMPFDSsHBH13LKStqaCCXchvGZklV2EGX7+xUikQci7OxFFb9D7yMco19jvH+j0QWuOKdvJ7pcPY1YeQ/twjRN+fcm6pP8g4hqAXgEYQvfy/YNlcbpXwD0iqH9u6dZw3+I/NZ+W0VWO/XkR0yB9+oeiPgRbkmUk63VlV7AzkQT32WNIpp64mcKSefZ3kF92ZeSLrS9XQXZhxOhficwfvfQlRXy2cBhxM7qGYRJRbYPm/SNKz/OukVulRVUn9xWLnCSLukFBpRooJ95IGO1BpKeAPR+p5fZrtKOT9Kptp888Pn0iqF9yPaVlcZp7bdVZJ3CWD35/h3uMJ/TlBkpG/hgBEq56r6igugPTfC4Clq+4M44KoaCtdlWqrf67rc1mobFiPqR9BCWXyHXSiRZy/bpklRMbu+U9CNCqTdG0vuJ2h5/KscbEn1U315Dfhvmk8KyTMMSpdPKIEVh1+yh2mN+kd/W59Oj1ZZtRKjlUyvKA0ZsBT4MDalxMWpMZLvvUcOGX8YZ1lbqBbavrSG/TRStwx5HKPDvEdv5s12pZZWkHxOFvo4nFMlvgcNtV2msqyE1Z2p+NyVtDLwfuI/tp5W4551sH9VQbq8dHzCuJV8vQKBaS7s2kHQ1Ec46lEohtK3/tiQdSfhQqtaTHykFrr4Gr4Sda3uiQ89TZmlKK01R5lvb/r8SK7xqC9vtao4QSS+w/eWBz34ZrtRUt+xSHgZcYPthRWF9zvZEDTZWVv4ORNngDYj0//WJFfM5leRfDOzQCxEt/9vFTc17ffJPJuKm31Y+n1WJz6p6XkSXkHQTUVZ6aLMUV0ry6xuvqpOxT+7lhCO5aoTdSJlQGKsLDmHn+i5RxKYTKEqnHkiEN20FbEYUz6oVqXDIwDEUu5rtC6cpthere48hz9W8uvfqmN8haT2iol+1EEXb55WHf6FuaGiPLwOnSzqa+FxeCtRMH9/I9nGS3gLLzB3VGy90kF/VVtLDGHQy9kxNTZ2MfbRST36kFLjba+g6U7yaKGR/LoCjBva9K8pfWG7fLse7AecBr5T0ddvTqe73XRj+2SuaxtZisaQNiGpvSwhFW6Pb0kdtv24gUaWHifIAn226EneU7r2YqJkh4D22v99E5gB/VdRg79lgdyQuznOddoz2y9NK0+o+WjF1jIQJRZEePiG1okQkzQfezPKOtFqhbOfafpTG6lqsSjSqrVWT+vvAs13qh5SIiOOBZxKr8G2mIfNK4CmDtj5JLwHebnurxhNffswFwHquUG1P0iNsL1EUxxrGRoSyXenPZshY/eaxtYF51eJ5w2F/BFHG91LCefecGp9Rl5H0ENuXzsA41UIGJ5DfSoTdqKzAdyL63B1LrF7buup+hYiz3Y1Ibtif6Jpdi7MUReHXkvQkorbIt1fwnpVhc6C/HMDtwBa2/yZpuquG1wOnSXq67asAyjb+ecBESnFaaKDQl6THuGGhL9tLyv1Zk4z7z4memypDzGObUtE8Zvv8chF6IPH9v9J1WuV1mplQ3oVWm1a3FWE3KivwecCTiAL52xLb+mPdV9600jhLbD9CfVXeFCU7qygqRVuyA4iOMyJqW3zOlT5kSe8gVtu9XqHPIGq5fJho/zSt1mqSdgU+S9RyeRlR32N391UPbIomKPRVcXfVdiLPhRTzWF+c8CWDP8wG8vcGTnE0Eng74cB/b1fi8LtOW07GFYzZOIppJFbgtu8kCqmfUpwJzwXOlPRu20dUHKq3orle0m7A7whHYxWKk+5bwLds11zZ9+S/p0Qr7Ex8wV7psVIA0+6LWeKnXwycCfwE2NVRda8mbRf6OpqxRJ7HUxJ5Ksr/h6P+CbAsKabm6ucdtr8uaRei1MOHiNTu6tmxyVDaaloNTBhh11hHjIQCh2Ve4N0I5b0A+DgVquwN8F5FHeQ3EPbG9YjyqY1Q/KoPA15DKA2VCIIjKnqxe1xAXHh6ZojN3aDUgKRbGbPNrUGYBG4sf1PNOOFWC33RciIP7ZvHeruS3YBP2z5R0Yh4TiPpONv7aPlkudor5LZNEa1E2I2EApe0iHDenAy8q0W7180uHVwoNa4VVfia8jpiVbyDo05xLzHg05Jeb/t/KoyBovXTYcANxA9exBdv2l9i28PCB9vgNuBCSa0U+gL+XkxYV0l6DZHIUzMC6FDCPHYJYbv8HtFbtRa/lfRZIsrlA2VBs0pF+V2lV7dl95bH+S5DnIyMlQeYNpIeTjSpucz2FU3ljZM9IjbwuxjLFht2la2yChxmc6phh1I0DniS7T8MnJ8PnDqYwddgnF8Aj3KlLjAziSYo+OV6hb6GJfJ8wPa5NeSXMXpp3dXNYyWq5anAJSX8dBPgoZ5+M+mkAT0no+1GjkZJ/0mUjV1CmMP+ywOVG5swEitw262uNBSd3B8NzB+wRa1HFHBqymqDyhvihy6pZlOB39DR2OBainoS+eMSeYqNel9KTP50ads8Jmk9238mVn1nlnP3JHYpjUsd311QdFr6ALGrEi2XAihRQTWadewLbGf7thLnfwqRC1GFkVDgM8DqwLrE39tvMvgzUKMWx2Rhao1D2Pq4mnDufpfxZogq6e5touUbRvR+gI2iRBRZna8mwvpOAk4rx28ELiJCR5vQtnnsGMI8sISxLXwPUzFbteN8kGjqXdUE0aMtJyPwd5cmMrZvKma+aoyECWWmkLSFKxWWGpDbXzBo3FPAmrarrMIVBaGWowsZrGqvYcSJRPGhnxIO2A2JC/bBnn55gX75rZvHyir/vk2c0Xd3JP3Ydg1/1UTy+39bvXK132gajSXpT4z1xBVRcG1Z7kPTMNq5psDnE01Y/5UWMjFnCknruH5T4FZRew0j+utdzwP+AGxeMUNywgy9mtl7vRyFGrLuThTTCURS2b8w1jwCqFONsDgZt6INJ+PEGcLA5AloU2GumFB69DIxd6edTMxWKbb8owhz0OaSHkY4Wl41uzObEmdI+m/qN4zor3d9p6RrainvwkyZx86RtEOfLT8J+uvx3EYkyfVo3NB7wMn4QUlVnYxNFfSKmGsr8FYzMdtG0rmEzf4kt9D2qU3UXseZVutdz6B57HLgAcCvynitZwImIOkywr+xzMlou4bzckaYayvwVjMxZwLbv9H4riqdKDnqljqq2K4RRTRr8vtoNROw65RckYM9viPSh9281GyrTsa2mWsKvJVMzBnkN5IeDVjS6sBBROzzyKOWOs7cXbD9q2LD35i597ucCtv2lDeA7ZuL7bopW2msGqoGjke+X+5cM6Es8PJlUztjd5S0EfAxxmpSn0qsSkY+sUfZcWZSBrJs7yqn04RSkHQR8DiXAmslVv6spt+ftp2MfeMMq1d/CxHr/9npRrvMNQW+BNjD9m/L8WOAT6YSaR+13PW763Q5y3YmkPQi4C1E/XuAvYH32f7S7M1q6kj6GFHj/dhyal/g94TPZj3bL5yO3Lm2VXsl8C1Fp5ntiS3902d3SitG0hFM3vW+Vj2RNsmOM5PT2SzbmcD2FyUtBnpO72fZvnw257SSPNz2Y/qOvy3ph7YfUxyp02JOKXDb50k6iDA9/J1I0OhCGOHdIaX6ECJTcitFB/n51MmCvbvQ2SzbGWQ1xgq41SxRMRPMV1/lUEmbE92ioEE46pxQ4EPsT2sTq52jJI28o6LtOiIzgbPjzIr4dbmtXm5JH5IOBl5OlGAV8GVJR7puv4A2eQNwtqRfEvPfEniVpHVo0Bx7TtjAZ8pR0RYTOECWMeoXoB4lgmYBfQsH21+ctQklnUHRUHqnXgZyUXw/reXkbcvJODDGGsCDCAX+8xoy58QKfNQV9BT40GxPoCmSvkSkK19IX0s1IBU4yxKdlrtId63MQ4uI8TkPvXr4tbia5Z2MNxDJVf8LTMvJOMAjGFvAbFt2/42+/3NCgWus68yyU4xVfmutJGUt7gYXIICFwDaeC1u+6fHGvsdrAs8miiolwdHAuZK+WY73IspK1KIVJ2OPthYwc0KBe+a6zrSKWm7c2zKXEsWIrp/tiYwitpcMnPqxpLvDhbsRkjazfZ3tj0g6E9iFWHi9hLpZ1K04GftoZQEzJxR4P6UA1L+Vwx/avng257OStN24tzp9tsV7AJdL+hnjoyw6Yb9vm5KY0mMVYrv9L7M0nVHidElPsX1tKXx2PoCklwJvo15f0lacjH20soCZE07MHn2e7F4Fs2cCnfFk9xXj6i+h+iPb/7ai984WXXcgzxSSrmHMrHcHcA3wbttnz+rEZhlJTyeyj59u+6py7lDg+cDTbF9XcazqTsY+2WcA2wFVFzBzbQV+AJHt1vNkf4BoBNAJBU77jXvb4LfAxrZ/3H+yZMH+dnamNHrY3nK25zCK2P6epH8AJ0vaC3gZsAPwmF5afUWqOxn7eGclOeOYawq8bU9227yOiGE/iGjc+wSipvko81HgrUPO31aee8aQ5+YMir6Lv7H9+3L8IsKB+Svgnbb/OJvzGwVsny7pxUTP0J8Au9ZcHUP7UVJt7TTnmgnlEELh9Xuyv2D7o7M3q7s3K+hos8wUNFeRdD7wRNt/LLuSrwKvJbbbD7Y9p7NV+yLIBKxBlITuLbyqRZBJuoIWnIySzra9y0SRcE3nPydW4DPoyW4VSQ8A/oOxxsDAyMcKrznJc2vN2CxGl3l9q+x9CZ/MN4BvSGrc07PrzGAEWStORtu7lPtW/o45ocCZOU9223wd+AyRWNCJRg7AeZJe7oE2VZIOINpYzXXmSVrV9h1EU+YD+56bK7/PUWAjWoySkrQVcJ3tf0h6HLAt8MX+GufTkjsXTCgz6cluE3Ww8W1p5PBNIpa2p7AXEvU+ntmz/c5VJL2NqIj5B2BzYHvblnR/YJFb7MSejDFRtFTFeuAXEt/7BcD3icJuD7TdqBrqnFDgAJJ2BT5L2L17nuzdW/BkV6cvRvgg4EZCIfavEkbe0SXp8UDPFn6ZUZtVXwAABD5JREFU7R/M5nxGiVJadxPg1L4IqQcA67p50+dkBJB0vu3tJf0H0cbtiP7a+NOWO1cUOICkXYBvEZ7sfWp7sttiIEZ4EHckEzNJRo62nYx945xLRF29DXiG7Wsmc/BPWe5cUOAz5clOkiQZhqIH7CuJCorHStoS2Nf24Y3kzgUF3nUkvYD4X31p4PzLgb/aPmZ2ZpYkdw/acjK2TSrwDiDpAiLz7NaB8+sBZ3TNsZkko0ZrTkbpONv7SLqE4SaaRvXMM0ypG8wbVN4Atv8sqWutpZJkFLnL9h2Sngl8tOdkrCD34HK/ewVZy5EKvBusJmmdXoRCD0n3INtvJUkNbpf0XCJTu1feofHiyPb15f5X/eclzQP2I0omTJtVmrw5mTGOAo6XtKB3ojz+KnWL2ifJXOUlwE7A+0qEyJbAl5sKlbSepLdI+oSkJyt4LdEBaJ/G8tMG3g0kvRJ4C7AuYUv7K3C47U/P6sSSJJkQSScCNxNVT3cFNiR2zQfbblwqIRV4x5C0LvF/W84mniTJytG2k3Ggdv88SsZtrd9v2sA7hu2/zPYckuRuRKtORiLnBADbd0q6pubiK1fgSZIkA/ScjLa/0lDOnYS5E2JVvxZRC79KEmEq8CRJ5iwll+LVwKZE7PdpwGuANwIX2t5zFqe3QlKBdwBJz5rsedsnTPZ8kiTDadvJ2DapwDuApKMnedq2Xzpjk0mSuxFtOxnbJp2YHcD2S2Z7DklyN6VVJ2Pb5Aq8Y0jaDfhX+lqV2X737M0oSbpL207GtskVeIeQ9BmiK/3jgc8BzwF+NquTSpIOY3vebM+hCbkC7xCSLra9bd/9usAJtp8823NLkmTmyVoo3eJv5f42Sfch7HdbzuJ8kiSZRdKE0i2+I2kD4L+B84nU3/+d/C1JktxdSRNKR5G0BrCm7Vtmey5JkswOaULpEJIWS3q1pA1t/yOVd5LMbVKBd4v9gPsA50n6qqSnSBrWqT5JkjlAmlA6iKRViOppnwbuAj4PfMz2H2d1YkmSzCi5Au8YkrYFPkw4Mr9BxIL/GfjBbM4rSZKZJ6NQOoSkJcCfiDZqh9r+R3nqXEk7z97MkiSZDdKE0iEk3c/21bM9jyRJRoM0oXSLmyR9pESjLJb0YUnrz/akkiSZHVKBd4vPA7cS3az3IWzfk5WaTZLkbkyaUDqEpAttb7eic0mSzA1yBd4t/iZpl95BcVz+bZLXJ0lyNyZX4B1C0nbAImB9ol7xH4H9bV88qxNLkmRWSAXeQUojVojC8/s27ZydJEk3SRNKB5C0nqS3SPqEpCcRjswXAb8gnJlJksxBcgXeAbreOTtJknZIBd4But45O0mSdkgTSjcY1zkb6FTn7CRJ2iFX4B2g652zkyRph1TgSZIkHSVNKEmSJB0lFXiSJElHSQWeJEnSUVKBJ0mSdJRU4EmSJB0lFXiSJElH+f/+C7nwHHwPIgAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"df['toss_winner'].value_counts().plot(kind='bar')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Total Matches vs Wins for Teams "
]
},
{
"cell_type": "code",
"execution_count": 16,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"(636, 17)"
]
},
"execution_count": 16,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.shape"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" id \n",
" season \n",
" city \n",
" date \n",
" team1 \n",
" team2 \n",
" toss_winner \n",
" toss_decision \n",
" result \n",
" dl_applied \n",
" winner \n",
" win_by_runs \n",
" win_by_wickets \n",
" player_of_match \n",
" venue \n",
" umpire1 \n",
" umpire2 \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 1 \n",
" 2017 \n",
" Hyderabad \n",
" 4/5/2017 \n",
" SRH \n",
" RCB \n",
" Royal Challengers Bangalore \n",
" field \n",
" normal \n",
" 0 \n",
" Sunrisers Hyderabad \n",
" 35 \n",
" 0 \n",
" Yuvraj Singh \n",
" Rajiv Gandhi International Stadium, Uppal \n",
" AY Dandekar \n",
" NJ Llong \n",
" \n",
" \n",
" 1 \n",
" 2 \n",
" 2017 \n",
" Pune \n",
" 4/6/2017 \n",
" MI \n",
" RPS \n",
" Rising Pune Supergiant \n",
" field \n",
" normal \n",
" 0 \n",
" Rising Pune Supergiant \n",
" 0 \n",
" 7 \n",
" SPD Smith \n",
" Maharashtra Cricket Association Stadium \n",
" A Nand Kishore \n",
" S Ravi \n",
" \n",
" \n",
" 2 \n",
" 3 \n",
" 2017 \n",
" Rajkot \n",
" 4/7/2017 \n",
" GL \n",
" KKR \n",
" Kolkata Knight Riders \n",
" field \n",
" normal \n",
" 0 \n",
" Kolkata Knight Riders \n",
" 0 \n",
" 10 \n",
" CA Lynn \n",
" Saurashtra Cricket Association Stadium \n",
" Nitin Menon \n",
" CK Nandan \n",
" \n",
" \n",
" 3 \n",
" 4 \n",
" 2017 \n",
" Indore \n",
" 4/8/2017 \n",
" RPS \n",
" KXIP \n",
" Kings XI Punjab \n",
" field \n",
" normal \n",
" 0 \n",
" Kings XI Punjab \n",
" 0 \n",
" 6 \n",
" GJ Maxwell \n",
" Holkar Cricket Stadium \n",
" AK Chaudhary \n",
" C Shamshuddin \n",
" \n",
" \n",
" 4 \n",
" 5 \n",
" 2017 \n",
" Bangalore \n",
" 4/8/2017 \n",
" RCB \n",
" DD \n",
" Royal Challengers Bangalore \n",
" bat \n",
" normal \n",
" 0 \n",
" Royal Challengers Bangalore \n",
" 15 \n",
" 0 \n",
" KM Jadhav \n",
" M Chinnaswamy Stadium \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id season city date team1 team2 toss_winner \\\n",
"0 1 2017 Hyderabad 4/5/2017 SRH RCB Royal Challengers Bangalore \n",
"1 2 2017 Pune 4/6/2017 MI RPS Rising Pune Supergiant \n",
"2 3 2017 Rajkot 4/7/2017 GL KKR Kolkata Knight Riders \n",
"3 4 2017 Indore 4/8/2017 RPS KXIP Kings XI Punjab \n",
"4 5 2017 Bangalore 4/8/2017 RCB DD Royal Challengers Bangalore \n",
"\n",
" toss_decision result dl_applied winner win_by_runs \\\n",
"0 field normal 0 Sunrisers Hyderabad 35 \n",
"1 field normal 0 Rising Pune Supergiant 0 \n",
"2 field normal 0 Kolkata Knight Riders 0 \n",
"3 field normal 0 Kings XI Punjab 0 \n",
"4 bat normal 0 Royal Challengers Bangalore 15 \n",
"\n",
" win_by_wickets player_of_match venue \\\n",
"0 0 Yuvraj Singh Rajiv Gandhi International Stadium, Uppal \n",
"1 7 SPD Smith Maharashtra Cricket Association Stadium \n",
"2 10 CA Lynn Saurashtra Cricket Association Stadium \n",
"3 6 GJ Maxwell Holkar Cricket Stadium \n",
"4 0 KM Jadhav M Chinnaswamy Stadium \n",
"\n",
" umpire1 umpire2 \n",
"0 AY Dandekar NJ Llong \n",
"1 A Nand Kishore S Ravi \n",
"2 Nitin Menon CK Nandan \n",
"3 AK Chaudhary C Shamshuddin \n",
"4 NaN NaN "
]
},
"execution_count": 17,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"0 RCB\n",
"1 RPS\n",
"2 KKR\n",
"3 KXIP\n",
"4 DD\n",
" ... \n",
"631 RCB\n",
"632 RCB\n",
"633 KKR\n",
"634 SRH\n",
"635 RCB\n",
"Name: team2, Length: 636, dtype: object"
]
},
"execution_count": 18,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df['team2']"
]
},
{
"cell_type": "code",
"execution_count": 19,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" team1 \n",
" team2 \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" SRH \n",
" RCB \n",
" \n",
" \n",
" 1 \n",
" MI \n",
" RPS \n",
" \n",
" \n",
" 2 \n",
" GL \n",
" KKR \n",
" \n",
" \n",
" 3 \n",
" RPS \n",
" KXIP \n",
" \n",
" \n",
" 4 \n",
" RCB \n",
" DD \n",
" \n",
" \n",
" ... \n",
" ... \n",
" ... \n",
" \n",
" \n",
" 631 \n",
" DD \n",
" RCB \n",
" \n",
" \n",
" 632 \n",
" GL \n",
" RCB \n",
" \n",
" \n",
" 633 \n",
" SRH \n",
" KKR \n",
" \n",
" \n",
" 634 \n",
" GL \n",
" SRH \n",
" \n",
" \n",
" 635 \n",
" SRH \n",
" RCB \n",
" \n",
" \n",
"
\n",
"
636 rows × 2 columns
\n",
"
"
],
"text/plain": [
" team1 team2\n",
"0 SRH RCB\n",
"1 MI RPS\n",
"2 GL KKR\n",
"3 RPS KXIP\n",
"4 RCB DD\n",
".. ... ...\n",
"631 DD RCB\n",
"632 GL RCB\n",
"633 SRH KKR\n",
"634 GL SRH\n",
"635 SRH RCB\n",
"\n",
"[636 rows x 2 columns]"
]
},
"execution_count": 19,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"matches_played_byteams=pd.concat([df['team1'],df['team2']],axis=1)\n",
"matches_played_byteams"
]
},
{
"cell_type": "code",
"execution_count": 20,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" team_name \n",
" Matches_played \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" CSK \n",
" 131 \n",
" \n",
" \n",
" 1 \n",
" DC \n",
" 75 \n",
" \n",
" \n",
" 2 \n",
" DD \n",
" 147 \n",
" \n",
" \n",
" 3 \n",
" GL \n",
" 30 \n",
" \n",
" \n",
" 4 \n",
" KKR \n",
" 148 \n",
" \n",
" \n",
" 5 \n",
" KTK \n",
" 14 \n",
" \n",
" \n",
" 6 \n",
" KXIP \n",
" 148 \n",
" \n",
" \n",
" 7 \n",
" MI \n",
" 157 \n",
" \n",
" \n",
" 8 \n",
" PW \n",
" 46 \n",
" \n",
" \n",
" 9 \n",
" RCB \n",
" 152 \n",
" \n",
" \n",
" 10 \n",
" RPS \n",
" 30 \n",
" \n",
" \n",
" 11 \n",
" RR \n",
" 118 \n",
" \n",
" \n",
" 12 \n",
" SRH \n",
" 76 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" team_name Matches_played\n",
"0 CSK 131\n",
"1 DC 75\n",
"2 DD 147\n",
"3 GL 30\n",
"4 KKR 148\n",
"5 KTK 14\n",
"6 KXIP 148\n",
"7 MI 157\n",
"8 PW 46\n",
"9 RCB 152\n",
"10 RPS 30\n",
"11 RR 118\n",
"12 SRH 76"
]
},
"execution_count": 20,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"teams=(matches_played_byteams['team1'].value_counts()+matches_played_byteams['team2'].value_counts()).reset_index()\n",
"teams.columns=['team_name','Matches_played']\n",
"teams"
]
},
{
"cell_type": "code",
"execution_count": 21,
"metadata": {},
"outputs": [],
"source": [
"df['winner']=df['winner'].map(Teams)"
]
},
{
"cell_type": "code",
"execution_count": 22,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" team_name \n",
" wins \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" MI \n",
" 92 \n",
" \n",
" \n",
" 1 \n",
" CSK \n",
" 79 \n",
" \n",
" \n",
" 2 \n",
" KKR \n",
" 77 \n",
" \n",
" \n",
" 3 \n",
" RCB \n",
" 73 \n",
" \n",
" \n",
" 4 \n",
" KXIP \n",
" 70 \n",
" \n",
" \n",
" 5 \n",
" RR \n",
" 63 \n",
" \n",
" \n",
" 6 \n",
" DD \n",
" 62 \n",
" \n",
" \n",
" 7 \n",
" SRH \n",
" 42 \n",
" \n",
" \n",
" 8 \n",
" DC \n",
" 29 \n",
" \n",
" \n",
" 9 \n",
" RPS \n",
" 15 \n",
" \n",
" \n",
" 10 \n",
" GL \n",
" 13 \n",
" \n",
" \n",
" 11 \n",
" PW \n",
" 12 \n",
" \n",
" \n",
" 12 \n",
" KTK \n",
" 6 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" team_name wins\n",
"0 MI 92\n",
"1 CSK 79\n",
"2 KKR 77\n",
"3 RCB 73\n",
"4 KXIP 70\n",
"5 RR 63\n",
"6 DD 62\n",
"7 SRH 42\n",
"8 DC 29\n",
"9 RPS 15\n",
"10 GL 13\n",
"11 PW 12\n",
"12 KTK 6"
]
},
"execution_count": 22,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"wins=pd.DataFrame(df['winner'].value_counts()).reset_index()\n",
"wins.columns=['team_name','wins']\n",
"wins"
]
},
{
"cell_type": "code",
"execution_count": 25,
"metadata": {},
"outputs": [],
"source": [
"player=teams.merge(wins,left_on='team_name',right_on='team_name',how='inner')"
]
},
{
"cell_type": "code",
"execution_count": 26,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" team \n",
" matches_played \n",
" wins \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" CSK \n",
" 131 \n",
" 79 \n",
" \n",
" \n",
" 1 \n",
" DC \n",
" 75 \n",
" 29 \n",
" \n",
" \n",
" 2 \n",
" DD \n",
" 147 \n",
" 62 \n",
" \n",
" \n",
" 3 \n",
" GL \n",
" 30 \n",
" 13 \n",
" \n",
" \n",
" 4 \n",
" KKR \n",
" 148 \n",
" 77 \n",
" \n",
" \n",
" 5 \n",
" KTK \n",
" 14 \n",
" 6 \n",
" \n",
" \n",
" 6 \n",
" KXIP \n",
" 148 \n",
" 70 \n",
" \n",
" \n",
" 7 \n",
" MI \n",
" 157 \n",
" 92 \n",
" \n",
" \n",
" 8 \n",
" PW \n",
" 46 \n",
" 12 \n",
" \n",
" \n",
" 9 \n",
" RCB \n",
" 152 \n",
" 73 \n",
" \n",
" \n",
" 10 \n",
" RPS \n",
" 30 \n",
" 15 \n",
" \n",
" \n",
" 11 \n",
" RR \n",
" 118 \n",
" 63 \n",
" \n",
" \n",
" 12 \n",
" SRH \n",
" 76 \n",
" 42 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" team matches_played wins\n",
"0 CSK 131 79\n",
"1 DC 75 29\n",
"2 DD 147 62\n",
"3 GL 30 13\n",
"4 KKR 148 77\n",
"5 KTK 14 6\n",
"6 KXIP 148 70\n",
"7 MI 157 92\n",
"8 PW 46 12\n",
"9 RCB 152 73\n",
"10 RPS 30 15\n",
"11 RR 118 63\n",
"12 SRH 76 42"
]
},
"execution_count": 26,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"player.columns=['team','matches_played','wins']\n",
"player"
]
},
{
"cell_type": "code",
"execution_count": 27,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" team \n",
" matches_played \n",
" wins \n",
" %win \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" CSK \n",
" 131 \n",
" 79 \n",
" 60.305344 \n",
" \n",
" \n",
" 1 \n",
" DC \n",
" 75 \n",
" 29 \n",
" 38.666667 \n",
" \n",
" \n",
" 2 \n",
" DD \n",
" 147 \n",
" 62 \n",
" 42.176871 \n",
" \n",
" \n",
" 3 \n",
" GL \n",
" 30 \n",
" 13 \n",
" 43.333333 \n",
" \n",
" \n",
" 4 \n",
" KKR \n",
" 148 \n",
" 77 \n",
" 52.027027 \n",
" \n",
" \n",
" 5 \n",
" KTK \n",
" 14 \n",
" 6 \n",
" 42.857143 \n",
" \n",
" \n",
" 6 \n",
" KXIP \n",
" 148 \n",
" 70 \n",
" 47.297297 \n",
" \n",
" \n",
" 7 \n",
" MI \n",
" 157 \n",
" 92 \n",
" 58.598726 \n",
" \n",
" \n",
" 8 \n",
" PW \n",
" 46 \n",
" 12 \n",
" 26.086957 \n",
" \n",
" \n",
" 9 \n",
" RCB \n",
" 152 \n",
" 73 \n",
" 48.026316 \n",
" \n",
" \n",
" 10 \n",
" RPS \n",
" 30 \n",
" 15 \n",
" 50.000000 \n",
" \n",
" \n",
" 11 \n",
" RR \n",
" 118 \n",
" 63 \n",
" 53.389831 \n",
" \n",
" \n",
" 12 \n",
" SRH \n",
" 76 \n",
" 42 \n",
" 55.263158 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" team matches_played wins %win\n",
"0 CSK 131 79 60.305344\n",
"1 DC 75 29 38.666667\n",
"2 DD 147 62 42.176871\n",
"3 GL 30 13 43.333333\n",
"4 KKR 148 77 52.027027\n",
"5 KTK 14 6 42.857143\n",
"6 KXIP 148 70 47.297297\n",
"7 MI 157 92 58.598726\n",
"8 PW 46 12 26.086957\n",
"9 RCB 152 73 48.026316\n",
"10 RPS 30 15 50.000000\n",
"11 RR 118 63 53.389831\n",
"12 SRH 76 42 55.263158"
]
},
"execution_count": 27,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"player['%win']=(player['wins']/player['matches_played'])*100\n",
"player"
]
},
{
"cell_type": "code",
"execution_count": 29,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
" \n",
" "
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"import plotly.offline as py\n",
"py.init_notebook_mode(connected=True)\n",
"import plotly.graph_objs as go"
]
},
{
"cell_type": "code",
"execution_count": 30,
"metadata": {},
"outputs": [],
"source": [
"trace1 = go.Bar(\n",
" x=player['team'],\n",
" y=player['matches_played'],\n",
" name='Total Matches'\n",
")\n",
"trace2 = go.Bar(\n",
" x=player.team,\n",
" y=player['wins'],\n",
" name='Matches Won'\n",
")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 31,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.plotly.v1+json": {
"config": {
"linkText": "Export to plot.ly",
"plotlyServerURL": "https://plot.ly",
"showLink": false
},
"data": [
{
"name": "Total Matches",
"type": "bar",
"x": [
"CSK",
"DC",
"DD",
"GL",
"KKR",
"KTK",
"KXIP",
"MI",
"PW",
"RCB",
"RPS",
"RR",
"SRH"
],
"y": [
131,
75,
147,
30,
148,
14,
148,
157,
46,
152,
30,
118,
76
]
},
{
"name": "Matches Won",
"type": "bar",
"x": [
"CSK",
"DC",
"DD",
"GL",
"KKR",
"KTK",
"KXIP",
"MI",
"PW",
"RCB",
"RPS",
"RR",
"SRH"
],
"y": [
79,
29,
62,
13,
77,
6,
70,
92,
12,
73,
15,
63,
42
]
}
],
"layout": {
"template": {
"data": {
"bar": [
{
"error_x": {
"color": "#2a3f5f"
},
"error_y": {
"color": "#2a3f5f"
},
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "bar"
}
],
"barpolar": [
{
"marker": {
"line": {
"color": "#E5ECF6",
"width": 0.5
}
},
"type": "barpolar"
}
],
"carpet": [
{
"aaxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"baxis": {
"endlinecolor": "#2a3f5f",
"gridcolor": "white",
"linecolor": "white",
"minorgridcolor": "white",
"startlinecolor": "#2a3f5f"
},
"type": "carpet"
}
],
"choropleth": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "choropleth"
}
],
"contour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "contour"
}
],
"contourcarpet": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "contourcarpet"
}
],
"heatmap": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmap"
}
],
"heatmapgl": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "heatmapgl"
}
],
"histogram": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "histogram"
}
],
"histogram2d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2d"
}
],
"histogram2dcontour": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "histogram2dcontour"
}
],
"mesh3d": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"type": "mesh3d"
}
],
"parcoords": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "parcoords"
}
],
"pie": [
{
"automargin": true,
"type": "pie"
}
],
"scatter": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter"
}
],
"scatter3d": [
{
"line": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatter3d"
}
],
"scattercarpet": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattercarpet"
}
],
"scattergeo": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergeo"
}
],
"scattergl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattergl"
}
],
"scattermapbox": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scattermapbox"
}
],
"scatterpolar": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolar"
}
],
"scatterpolargl": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterpolargl"
}
],
"scatterternary": [
{
"marker": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"type": "scatterternary"
}
],
"surface": [
{
"colorbar": {
"outlinewidth": 0,
"ticks": ""
},
"colorscale": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"type": "surface"
}
],
"table": [
{
"cells": {
"fill": {
"color": "#EBF0F8"
},
"line": {
"color": "white"
}
},
"header": {
"fill": {
"color": "#C8D4E3"
},
"line": {
"color": "white"
}
},
"type": "table"
}
]
},
"layout": {
"annotationdefaults": {
"arrowcolor": "#2a3f5f",
"arrowhead": 0,
"arrowwidth": 1
},
"coloraxis": {
"colorbar": {
"outlinewidth": 0,
"ticks": ""
}
},
"colorscale": {
"diverging": [
[
0,
"#8e0152"
],
[
0.1,
"#c51b7d"
],
[
0.2,
"#de77ae"
],
[
0.3,
"#f1b6da"
],
[
0.4,
"#fde0ef"
],
[
0.5,
"#f7f7f7"
],
[
0.6,
"#e6f5d0"
],
[
0.7,
"#b8e186"
],
[
0.8,
"#7fbc41"
],
[
0.9,
"#4d9221"
],
[
1,
"#276419"
]
],
"sequential": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
],
"sequentialminus": [
[
0,
"#0d0887"
],
[
0.1111111111111111,
"#46039f"
],
[
0.2222222222222222,
"#7201a8"
],
[
0.3333333333333333,
"#9c179e"
],
[
0.4444444444444444,
"#bd3786"
],
[
0.5555555555555556,
"#d8576b"
],
[
0.6666666666666666,
"#ed7953"
],
[
0.7777777777777778,
"#fb9f3a"
],
[
0.8888888888888888,
"#fdca26"
],
[
1,
"#f0f921"
]
]
},
"colorway": [
"#636efa",
"#EF553B",
"#00cc96",
"#ab63fa",
"#FFA15A",
"#19d3f3",
"#FF6692",
"#B6E880",
"#FF97FF",
"#FECB52"
],
"font": {
"color": "#2a3f5f"
},
"geo": {
"bgcolor": "white",
"lakecolor": "white",
"landcolor": "#E5ECF6",
"showlakes": true,
"showland": true,
"subunitcolor": "white"
},
"hoverlabel": {
"align": "left"
},
"hovermode": "closest",
"mapbox": {
"style": "light"
},
"paper_bgcolor": "white",
"plot_bgcolor": "#E5ECF6",
"polar": {
"angularaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"radialaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"scene": {
"xaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"yaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
},
"zaxis": {
"backgroundcolor": "#E5ECF6",
"gridcolor": "white",
"gridwidth": 2,
"linecolor": "white",
"showbackground": true,
"ticks": "",
"zerolinecolor": "white"
}
},
"shapedefaults": {
"line": {
"color": "#2a3f5f"
}
},
"ternary": {
"aaxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"baxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
},
"bgcolor": "#E5ECF6",
"caxis": {
"gridcolor": "white",
"linecolor": "white",
"ticks": ""
}
},
"title": {
"x": 0.05
},
"xaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
},
"yaxis": {
"automargin": true,
"gridcolor": "white",
"linecolor": "white",
"ticks": "",
"title": {
"standoff": 15
},
"zerolinecolor": "white",
"zerolinewidth": 2
}
}
}
}
},
"text/html": [
"\n",
" \n",
" \n",
"
\n",
" \n",
"
"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"data = [trace1, trace2]\n",
"py.iplot(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Matches played across each season"
]
},
{
"cell_type": "code",
"execution_count": 32,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 32,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX4AAAEGCAYAAABiq/5QAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAUWklEQVR4nO3df5BlZX3n8fdHBpagkOFHQwhIRrMEZY0M2IskWP6AkKAxwCZidKMZDcnsbkVLKrpZXGsts6sVUGM0JGWWCuK4GgmiBOJuxKmJQq1BdIYf8mMgBAqQMM6MKMEftZjB7/5xzhTNzDTe6elzupvn/aq6dc997jnn+c6d7s89/dxzn5OqQpLUjqctdAGSpHEZ/JLUGINfkhpj8EtSYwx+SWrMsoUuYBKHHHJIrVixYqHLkKQlZcOGDd+sqqkd25dE8K9YsYL169cvdBmStKQkuW9X7Q71SFJjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSY5bEN3elpeI9r3vVKP284+OXj9KPnpo84pekxhj8ktQYg1+SGmPwS1Jj/HBXTwl/+ta/Ga2vN/3Rr4zWlzQEj/glqTEGvyQ1xqEe7bFrXvySUfp5ybXXjNKP9FTnEb8kNcbgl6TGGPyS1BiDX5IaM1jwJzkmyU0zbo8kOTfJQUnWJrmrvz9wqBokSTsbLPir6s6qWllVK4EXAN8HrgDOA9ZV1dHAuv6xJGkkYw31nArcXVX3AWcCa/r2NcBZI9UgSWK84H8N8Ml++bCq2gTQ3x+6qw2SrE6yPsn6rVu3jlSmJD31DR78SfYBzgA+tTvbVdVFVTVdVdNTU1PDFCdJDRrjiP/lwA1Vtbl/vDnJ4QD9/ZYRapAk9cYI/tfy+DAPwFXAqn55FXDlCDVIknqDBn+S/YDTgM/MaD4fOC3JXf1z5w9ZgyTpiQadpK2qvg8cvEPbQ3Rn+UiSFoDf3JWkxhj8ktQYg1+SGmPwS1JjDH5JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1Jihr7m7PMnlSe5IsjHJzyU5KMnaJHf19wcOWYMk6YmGPuL/EPC5qnoOcBywETgPWFdVRwPr+seSpJEMFvxJDgBeDFwMUFU/qKqHgTOBNf1qa4CzhqpBkrSzZQPu+9nAVuCSJMcBG4C3AIdV1SaAqtqU5NBdbZxkNbAa4KijjhqwzKXr5AtPHq2vL735S6P1pT2z8T1/N1pfz33HKaP1NReXferE0fp69dlfGa2vPTXkUM8y4ATgw1V1PPA9dmNYp6ouqqrpqpqempoaqkZJas6Qwf8A8EBVXd8/vpzujWBzksMB+vstA9YgSdrBYEM9VfWNJF9PckxV3QmcCtze31YB5/f3Vw5Vg6SF8653vesp1c9cHXf51aP1dfOrfmmi9YYc4wd4M/CJJPsA9wBvpPsr47Ik5wD3A2cPXIMkaYZBg7+qbgKmd/HUqUP2K0ma3dBH/PPuBf/5Y6P1teF9vzlaX5I0FqdskKTGLLkj/sXi/v/+s6P0c9Q7bxmlH0nt8Ihfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxgw6H3+Se4HvAI8B26pqOslBwF8BK4B7gVdX1beHrEOS9LgxjvhfVlUrq2r7tXfPA9ZV1dHAuv6xJGkkCzHUcyawpl9eA5y1ADVIUrOGDv4CPp9kQ5LVfdthVbUJoL8/dOAaJEkzDH3N3ZOr6sEkhwJrk9wx6Yb9G8VqgKOOOmqo+iSpOYMe8VfVg/39FuAK4ERgc5LDAfr7LbNse1FVTVfV9NTU1JBlSlJTBgv+JE9Psv/2ZeAXgVuBq4BV/WqrgCuHqkGStLMhh3oOA65Isr2fv6yqzyX5KnBZknOA+4GzB6xBkrSDwYK/qu4BjttF+0PAqUP1K0l6cn5zV5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjDH5JasxEwZ9k3SRtkqTF70knaUuyL7AfcEiSA4H0Tx0A/OTAtUmSBvCjZuf8D8C5dCG/gceD/xHgzwasS5I0kCcN/qr6EPChJG+uqgtHqkmSNKCJ5uOvqguT/DywYuY2VfWxgeqSJA1kouBP8r+AnwZuAh7rmwsw+CVpiZn0ClzTwLFVVUMWI0ka3qTn8d8K/MSQhUiSxjHpEf8hwO1JvgI8ur2xqs74URsm2QtYD/xTVb0yybOAS4GDgBuA11fVD3a7cknSnEwa/O/agz7eAmykO/cf4ALgj6vq0iR/DpwDfHgP9i9J2g2TntVzzVx2nuRI4JeB9wC/lyTAKcC/71dZQ/emYvBL0kgmnbLhO0ke6W//L8ljSR6ZYNMPAr8P/LB/fDDwcFVt6x8/ABwxS5+rk6xPsn7r1q2TlClJmsBEwV9V+1fVAf1tX+DXgD99sm2SvBLYUlUbZjbvavez9HlRVU1X1fTU1NQkZUqSJjDpGP8TVNVfJznvR6x2MnBGklcA+9KN8X8QWJ5kWX/UfyTw4FxqkCTNzaRf4PrVGQ+fRnde/5Oe019Vbwfe3m//UuBtVfUbST4FvIruzJ5VwJW7X7Ykaa4mPeL/lRnL24B7gTPn2Od/AS5N8m7gRuDiOe5HkjQHk57V88Y96aSqvgh8sV++BzhxT/YnSZq7Sc/qOTLJFUm2JNmc5NP9qZqSpCVm0ikbLgGuopuX/wjgb/o2SdISM2nwT1XVJVW1rb99FPAcS0lagiYN/m8meV2Svfrb64CHhixMkjSMSYP/t4BXA98ANtGdjrlHH/hKkhbGpKdz/g9gVVV9GyDJQcD76d4QJElLyKRH/M/fHvoAVfUt4PhhSpIkDWnS4H9akgO3P+iP+Oc03YMkaWFNGt5/BPx9ksvppmp4Nd1Uy5KkJWbSb+5+LMl6urn0A/xqVd0+aGWSpEFMPFzTB71hL0lL3KRj/JKkpwiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDVmsOBPsm+SryS5OcltSf6gb39WkuuT3JXkr5LsM1QNkqSdDXnE/yhwSlUdB6wETk9yEnAB8MdVdTTwbeCcAWuQJO1gsOCvznf7h3v3t6Kb9uHyvn0NcNZQNUiSdjboGH9/ta6bgC3AWuBu4OGq2tav8gDdNXx3te3qJOuTrN+6deuQZUpSUwYN/qp6rKpWAkcCJwLP3dVqs2x7UVVNV9X01JSX95Wk+TLKWT1V9TDwReAkYHmS7ZPDHQk8OEYNkqTOkGf1TCVZ3i//GPALwEbgC3TX7AVYBVw5VA2SpJ0NeRWtw4E1Sfaie4O5rKo+m+R24NIk7wZuBC4esAZJ0g4GC/6q+hq7uC5vVd1DN94vSVoAfnNXkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDXG4Jekxhj8ktQYg1+SGmPwS1JjhrzY+jOTfCHJxiS3JXlL335QkrVJ7urvDxyqBknSzoY84t8GvLWqngucBPxukmOB84B1VXU0sK5/LEkayWDBX1WbquqGfvk7wEbgCOBMYE2/2hrgrKFqkCTtbJQx/iQrgOOB64HDqmoTdG8OwKGzbLM6yfok67du3TpGmZLUhMGDP8kzgE8D51bVI5NuV1UXVdV0VU1PTU0NV6AkNWbQ4E+yN13of6KqPtM3b05yeP/84cCWIWuQJD3RkGf1BLgY2FhVH5jx1FXAqn55FXDlUDVIkna2bMB9nwy8HrglyU19238FzgcuS3IOcD9w9oA1SJJ2MFjwV9X/BTLL06cO1a8k6cn5zV1JaozBL0mNMfglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0Z8mLrH0myJcmtM9oOSrI2yV39/YFD9S9J2rUhj/g/Cpy+Q9t5wLqqOhpY1z+WJI1osOCvqmuBb+3QfCawpl9eA5w1VP+SpF0be4z/sKraBNDfHzpy/5LUvEX74W6S1UnWJ1m/devWhS5Hkp4yxg7+zUkOB+jvt8y2YlVdVFXTVTU9NTU1WoGS9FQ3dvBfBazql1cBV47cvyQ1b8jTOT8JXAcck+SBJOcA5wOnJbkLOK1/LEka0bKhdlxVr53lqVOH6lOS9KMt2g93JUnDMPglqTEGvyQ1xuCXpMYY/JLUGINfkhpj8EtSYwx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqjMEvSY0x+CWpMQa/JDVmQYI/yelJ7kzyj0nOW4gaJKlVowd/kr2APwNeDhwLvDbJsWPXIUmtWogj/hOBf6yqe6rqB8ClwJkLUIckNSlVNW6HyauA06vqt/vHrwdeWFVv2mG91cDq/uExwJ172PUhwDf3cB97ajHUAIujDmt43GKoYzHUAIujjsVQA8xPHT9VVVM7Ni7bw53ORXbRttO7T1VdBFw0b50m66tqer72t1RrWCx1WMPiqmMx1LBY6lgMNQxdx0IM9TwAPHPG4yOBBxegDklq0kIE/1eBo5M8K8k+wGuAqxagDklq0uhDPVW1LcmbgKuBvYCPVNVtI3Q9b8NGe2Ax1ACLow5reNxiqGMx1ACLo47FUAMMWMfoH+5KkhaW39yVpMYY/JLUmCUb/EmemeQLSTYmuS3JW/r2g5KsTXJXf39g354kf9JPE/G1JCfM2Nd7+31s7NfZ1SmnQ9dwQZJb+9uvD/xaPCfJdUkeTfK2HfY1p+k05rmGjyTZkuTW3Xkd5rOO2fYzcg37JvlKkpv7/fzBQrwWM/a3V5Ibk3x2IWpIcm+SW5LclGT9AtWwPMnlSe7o9/dzY9eR5Jj+Ndh+eyTJuZPWAUBVLckbcDhwQr+8P/APdFNAvBc4r28/D7igX34F8Ld03yM4Cbi+b/954Et0HzTvBVwHvHTkGn4ZWEv3YfvTgfXAAQO+FocC/xZ4D/C2GfvZC7gbeDawD3AzcOyYNfTPvRg4Abh1hJ+L2V6LXe5n5BoCPKNf3hu4Hjhp7Ndixv5+D/hL4LMLUQNwL3DIQv1M9M+tAX67X94HWL5Q/x8zfme/QfdFrYlfkyV7xF9Vm6rqhn75O8BG4Ai66R/W9KutAc7ql88EPladLwPLkxxO9+Wxfen+E/8V3S/Y5pFrOBa4pqq2VdX36AL39KFei6raUlVfBf5lh13NeTqNeayBqroW+NYk/Q5Vx5PsZ8waqqq+2z/cu79NfDbGfP6fJDmS7gDlLybtf75rmKv5qiHJAXQHJRf36/2gqh4eu44dnArcXVX3TVoHLOGhnpmSrACOpzsiOqyqNkH3QtO9a0L3An99xmYPAEdU1XXAF4BN/e3qqto4Zg10Qf/yJPslOQR4GU/8ktt81zGb2eobs4Z5M1917LCfUWvoh1duArYAa6tqt2uYjzqADwK/D/xwLv3PUw0FfD7JhnRTuoxdw7OBrcAl/ZDXXyR5+gLUMdNrgE/ubv9LPviTPAP4NHBuVT3yZKvuoq2S/GvguXTfID4COCXJi8esoao+D/wf4O/p/hOvA7btTg27Wcdu1TdyDfNivurYk/3MRw1V9VhVraT7+TwxyfN2dx97WkeSVwJbqmrD7m47XzX0Tq6qE+hm9v3dAX9PZ7OMbgjyw1V1PPA9uqGZ3TKPP5v7AGcAn9rdbZd08CfZm+4F/ERVfaZv3twPn9Dfb+nbZ5sq4t8BX66q7/Z/Vv8t3fj7mDVQVe+pqpVVdRpdAN81aQ1zqGM2ezSdxjzVsMfmq45Z9jNqDdv1QwpfZDeGAOexjpOBM5LcSzf8d0qSj49cA1W1/XdlC3AF3dDkmDU8ADww46+uy+neCCY2zz8XLwduqKqJhqZnWrLBnyR0Y20bq+oDM566CljVL68CrpzR/pvpnAT8c/9n1f3AS5Is6/9TXkI39jZaDf2f8wf3+3w+8Hzg85O9EnOqYzZznk5jHmvYI/NVx5PsZ8wappIs75d/DPgF4I6x66iqt1fVkVW1gu5n4u+q6nVj1pDk6Un2374M/CIw0Vlf8/g6fAP4epJj+qZTgdsnqWE+65jhtcxhmAdY0mf1vIhuGOJrwE397RXAwcA6uiPmdcBB/fqhuwDM3cAtwHQ9/qn4/6QL+9uBDyxADfv2fd8OfBlYOfBr8RN0Ry+PAA/3ywf0z72C7myDu4F3LFANn6T7vOVf+vZzxq5jtv2MXMPzgRv7/dwKvHOhfi5m7POl7N5ZPfP1Wjyb7rOwm4HbFvBncyXdWXdfA/4aOHCB6tgPeAj48bnkp1M2SFJjluxQjyRpbgx+SWqMwS9JjTH4JakxBr8kNcbgl6TGGPyS1BiDX83qvw36v9PNd39rkl9P8oIk1/QTgV0946v0v5Pkq/26n06yX99+dr/tzUmu7dv2TXJJurnjb0zysr79DUk+k+Rz6eZef+/C/evVMr/ApWYl+TXg9Kr6nf7xj9PN1XRmVW1Nd0GcX6qq30pycFU91K/3bmBzVV2Y5JZ+H/+UZHlVPZzkrcDzquqNSZ5DN/3Gz9BNd/BOulkZHwXuBF5UVV9HGtGyhS5AWkC3AO9PcgHwWeDbwPOAtd20KuxFN3UEwPP6wF8OPAO4um//EvDRJJcB2yfdehFwIUBV3ZHkPrrgB1hXVf8MkOR24Kd44lTY0uAMfjWrqv4hyQvo5kv5Q7qroN1WVbu6nN5HgbOq6uYkb6Cbs4aq+o9JXkh3kZKbkqxk19Nbb/fojOXH8HdQC8AxfjUryU8C36+qjwPvB14ITKW/jmqSvZP8m371/YFN/QyuvzFjHz9dVddX1TuBb9JNa33t9nWS/AxwFN2wjrQoeLShlv0s8L4kP6SbCfQ/0V0A50/68f5ldFeeug34b3RXS7qPboho/34f70tyNN1R/jq62SPvAP68H//fBryhqh7th4+kBeeHu5LUGId6JKkxBr8kNcbgl6TGGPyS1BiDX5IaY/BLUmMMfklqzP8H90hffDEd3uUAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"sns.countplot(df['season'])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### Runs Across the Seasons"
]
},
{
"cell_type": "code",
"execution_count": 33,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" id \n",
" season \n",
" city \n",
" date \n",
" team1 \n",
" team2 \n",
" toss_winner \n",
" toss_decision \n",
" result \n",
" dl_applied \n",
" winner \n",
" win_by_runs \n",
" win_by_wickets \n",
" player_of_match \n",
" venue \n",
" umpire1 \n",
" umpire2 \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 1 \n",
" 2017 \n",
" Hyderabad \n",
" 4/5/2017 \n",
" SRH \n",
" RCB \n",
" Royal Challengers Bangalore \n",
" field \n",
" normal \n",
" 0 \n",
" SRH \n",
" 35 \n",
" 0 \n",
" Yuvraj Singh \n",
" Rajiv Gandhi International Stadium, Uppal \n",
" AY Dandekar \n",
" NJ Llong \n",
" \n",
" \n",
" 1 \n",
" 2 \n",
" 2017 \n",
" Pune \n",
" 4/6/2017 \n",
" MI \n",
" RPS \n",
" Rising Pune Supergiant \n",
" field \n",
" normal \n",
" 0 \n",
" RPS \n",
" 0 \n",
" 7 \n",
" SPD Smith \n",
" Maharashtra Cricket Association Stadium \n",
" A Nand Kishore \n",
" S Ravi \n",
" \n",
" \n",
" 2 \n",
" 3 \n",
" 2017 \n",
" Rajkot \n",
" 4/7/2017 \n",
" GL \n",
" KKR \n",
" Kolkata Knight Riders \n",
" field \n",
" normal \n",
" 0 \n",
" KKR \n",
" 0 \n",
" 10 \n",
" CA Lynn \n",
" Saurashtra Cricket Association Stadium \n",
" Nitin Menon \n",
" CK Nandan \n",
" \n",
" \n",
" 3 \n",
" 4 \n",
" 2017 \n",
" Indore \n",
" 4/8/2017 \n",
" RPS \n",
" KXIP \n",
" Kings XI Punjab \n",
" field \n",
" normal \n",
" 0 \n",
" KXIP \n",
" 0 \n",
" 6 \n",
" GJ Maxwell \n",
" Holkar Cricket Stadium \n",
" AK Chaudhary \n",
" C Shamshuddin \n",
" \n",
" \n",
" 4 \n",
" 5 \n",
" 2017 \n",
" Bangalore \n",
" 4/8/2017 \n",
" RCB \n",
" DD \n",
" Royal Challengers Bangalore \n",
" bat \n",
" normal \n",
" 0 \n",
" RCB \n",
" 15 \n",
" 0 \n",
" KM Jadhav \n",
" M Chinnaswamy Stadium \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" id season city date team1 team2 toss_winner \\\n",
"0 1 2017 Hyderabad 4/5/2017 SRH RCB Royal Challengers Bangalore \n",
"1 2 2017 Pune 4/6/2017 MI RPS Rising Pune Supergiant \n",
"2 3 2017 Rajkot 4/7/2017 GL KKR Kolkata Knight Riders \n",
"3 4 2017 Indore 4/8/2017 RPS KXIP Kings XI Punjab \n",
"4 5 2017 Bangalore 4/8/2017 RCB DD Royal Challengers Bangalore \n",
"\n",
" toss_decision result dl_applied winner win_by_runs win_by_wickets \\\n",
"0 field normal 0 SRH 35 0 \n",
"1 field normal 0 RPS 0 7 \n",
"2 field normal 0 KKR 0 10 \n",
"3 field normal 0 KXIP 0 6 \n",
"4 bat normal 0 RCB 15 0 \n",
"\n",
" player_of_match venue umpire1 \\\n",
"0 Yuvraj Singh Rajiv Gandhi International Stadium, Uppal AY Dandekar \n",
"1 SPD Smith Maharashtra Cricket Association Stadium A Nand Kishore \n",
"2 CA Lynn Saurashtra Cricket Association Stadium Nitin Menon \n",
"3 GJ Maxwell Holkar Cricket Stadium AK Chaudhary \n",
"4 KM Jadhav M Chinnaswamy Stadium NaN \n",
"\n",
" umpire2 \n",
"0 NJ Llong \n",
"1 S Ravi \n",
"2 CK Nandan \n",
"3 C Shamshuddin \n",
"4 NaN "
]
},
"execution_count": 33,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df.head()"
]
},
{
"cell_type": "code",
"execution_count": 34,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" match_id \n",
" inning \n",
" batting_team \n",
" bowling_team \n",
" over \n",
" ball \n",
" batsman \n",
" non_striker \n",
" bowler \n",
" is_super_over \n",
" ... \n",
" bye_runs \n",
" legbye_runs \n",
" noball_runs \n",
" penalty_runs \n",
" batsman_runs \n",
" extra_runs \n",
" total_runs \n",
" player_dismissed \n",
" dismissal_kind \n",
" fielder \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 1 \n",
" 1 \n",
" Sunrisers Hyderabad \n",
" Royal Challengers Bangalore \n",
" 1 \n",
" 1 \n",
" DA Warner \n",
" S Dhawan \n",
" TS Mills \n",
" 0 \n",
" ... \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 1 \n",
" 1 \n",
" 1 \n",
" Sunrisers Hyderabad \n",
" Royal Challengers Bangalore \n",
" 1 \n",
" 2 \n",
" DA Warner \n",
" S Dhawan \n",
" TS Mills \n",
" 0 \n",
" ... \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 2 \n",
" 1 \n",
" 1 \n",
" Sunrisers Hyderabad \n",
" Royal Challengers Bangalore \n",
" 1 \n",
" 3 \n",
" DA Warner \n",
" S Dhawan \n",
" TS Mills \n",
" 0 \n",
" ... \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 4 \n",
" 0 \n",
" 4 \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 3 \n",
" 1 \n",
" 1 \n",
" Sunrisers Hyderabad \n",
" Royal Challengers Bangalore \n",
" 1 \n",
" 4 \n",
" DA Warner \n",
" S Dhawan \n",
" TS Mills \n",
" 0 \n",
" ... \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 4 \n",
" 1 \n",
" 1 \n",
" Sunrisers Hyderabad \n",
" Royal Challengers Bangalore \n",
" 1 \n",
" 5 \n",
" DA Warner \n",
" S Dhawan \n",
" TS Mills \n",
" 0 \n",
" ... \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 2 \n",
" 2 \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
"
\n",
"
5 rows × 21 columns
\n",
"
"
],
"text/plain": [
" match_id inning batting_team bowling_team over \\\n",
"0 1 1 Sunrisers Hyderabad Royal Challengers Bangalore 1 \n",
"1 1 1 Sunrisers Hyderabad Royal Challengers Bangalore 1 \n",
"2 1 1 Sunrisers Hyderabad Royal Challengers Bangalore 1 \n",
"3 1 1 Sunrisers Hyderabad Royal Challengers Bangalore 1 \n",
"4 1 1 Sunrisers Hyderabad Royal Challengers Bangalore 1 \n",
"\n",
" ball batsman non_striker bowler is_super_over ... bye_runs \\\n",
"0 1 DA Warner S Dhawan TS Mills 0 ... 0 \n",
"1 2 DA Warner S Dhawan TS Mills 0 ... 0 \n",
"2 3 DA Warner S Dhawan TS Mills 0 ... 0 \n",
"3 4 DA Warner S Dhawan TS Mills 0 ... 0 \n",
"4 5 DA Warner S Dhawan TS Mills 0 ... 0 \n",
"\n",
" legbye_runs noball_runs penalty_runs batsman_runs extra_runs \\\n",
"0 0 0 0 0 0 \n",
"1 0 0 0 0 0 \n",
"2 0 0 0 4 0 \n",
"3 0 0 0 0 0 \n",
"4 0 0 0 0 2 \n",
"\n",
" total_runs player_dismissed dismissal_kind fielder \n",
"0 0 NaN NaN NaN \n",
"1 0 NaN NaN NaN \n",
"2 4 NaN NaN NaN \n",
"3 0 NaN NaN NaN \n",
"4 2 NaN NaN NaN \n",
"\n",
"[5 rows x 21 columns]"
]
},
"execution_count": 34,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"df2=pd.read_csv('F:\\Data Science projects\\EDA\\IPL/deliveries.csv')\n",
"df2.head()\n"
]
},
{
"cell_type": "code",
"execution_count": 35,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" season \n",
" match_id \n",
" inning \n",
" batting_team \n",
" bowling_team \n",
" over \n",
" ball \n",
" batsman \n",
" non_striker \n",
" bowler \n",
" ... \n",
" bye_runs \n",
" legbye_runs \n",
" noball_runs \n",
" penalty_runs \n",
" batsman_runs \n",
" extra_runs \n",
" total_runs \n",
" player_dismissed \n",
" dismissal_kind \n",
" fielder \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 2017 \n",
" 1 \n",
" 1 \n",
" Sunrisers Hyderabad \n",
" Royal Challengers Bangalore \n",
" 1 \n",
" 1 \n",
" DA Warner \n",
" S Dhawan \n",
" TS Mills \n",
" ... \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 1 \n",
" 2017 \n",
" 1 \n",
" 1 \n",
" Sunrisers Hyderabad \n",
" Royal Challengers Bangalore \n",
" 1 \n",
" 2 \n",
" DA Warner \n",
" S Dhawan \n",
" TS Mills \n",
" ... \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 2 \n",
" 2017 \n",
" 1 \n",
" 1 \n",
" Sunrisers Hyderabad \n",
" Royal Challengers Bangalore \n",
" 1 \n",
" 3 \n",
" DA Warner \n",
" S Dhawan \n",
" TS Mills \n",
" ... \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 4 \n",
" 0 \n",
" 4 \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 3 \n",
" 2017 \n",
" 1 \n",
" 1 \n",
" Sunrisers Hyderabad \n",
" Royal Challengers Bangalore \n",
" 1 \n",
" 4 \n",
" DA Warner \n",
" S Dhawan \n",
" TS Mills \n",
" ... \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 4 \n",
" 2017 \n",
" 1 \n",
" 1 \n",
" Sunrisers Hyderabad \n",
" Royal Challengers Bangalore \n",
" 1 \n",
" 5 \n",
" DA Warner \n",
" S Dhawan \n",
" TS Mills \n",
" ... \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 2 \n",
" 2 \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" ... \n",
" \n",
" \n",
" 150455 \n",
" 2016 \n",
" 636 \n",
" 2 \n",
" Royal Challengers Bangalore \n",
" Sunrisers Hyderabad \n",
" 20 \n",
" 2 \n",
" Sachin Baby \n",
" CJ Jordan \n",
" B Kumar \n",
" ... \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 2 \n",
" 0 \n",
" 2 \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 150456 \n",
" 2016 \n",
" 636 \n",
" 2 \n",
" Royal Challengers Bangalore \n",
" Sunrisers Hyderabad \n",
" 20 \n",
" 3 \n",
" Sachin Baby \n",
" CJ Jordan \n",
" B Kumar \n",
" ... \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" CJ Jordan \n",
" run out \n",
" NV Ojha \n",
" \n",
" \n",
" 150457 \n",
" 2016 \n",
" 636 \n",
" 2 \n",
" Royal Challengers Bangalore \n",
" Sunrisers Hyderabad \n",
" 20 \n",
" 4 \n",
" Iqbal Abdulla \n",
" Sachin Baby \n",
" B Kumar \n",
" ... \n",
" 0 \n",
" 1 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 1 \n",
" 1 \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 150458 \n",
" 2016 \n",
" 636 \n",
" 2 \n",
" Royal Challengers Bangalore \n",
" Sunrisers Hyderabad \n",
" 20 \n",
" 5 \n",
" Sachin Baby \n",
" Iqbal Abdulla \n",
" B Kumar \n",
" ... \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 1 \n",
" 0 \n",
" 1 \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
" 150459 \n",
" 2016 \n",
" 636 \n",
" 2 \n",
" Royal Challengers Bangalore \n",
" Sunrisers Hyderabad \n",
" 20 \n",
" 6 \n",
" Iqbal Abdulla \n",
" Sachin Baby \n",
" B Kumar \n",
" ... \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 0 \n",
" 4 \n",
" 0 \n",
" 4 \n",
" NaN \n",
" NaN \n",
" NaN \n",
" \n",
" \n",
"
\n",
"
150460 rows × 22 columns
\n",
"
"
],
"text/plain": [
" season match_id inning batting_team \\\n",
"0 2017 1 1 Sunrisers Hyderabad \n",
"1 2017 1 1 Sunrisers Hyderabad \n",
"2 2017 1 1 Sunrisers Hyderabad \n",
"3 2017 1 1 Sunrisers Hyderabad \n",
"4 2017 1 1 Sunrisers Hyderabad \n",
"... ... ... ... ... \n",
"150455 2016 636 2 Royal Challengers Bangalore \n",
"150456 2016 636 2 Royal Challengers Bangalore \n",
"150457 2016 636 2 Royal Challengers Bangalore \n",
"150458 2016 636 2 Royal Challengers Bangalore \n",
"150459 2016 636 2 Royal Challengers Bangalore \n",
"\n",
" bowling_team over ball batsman non_striker \\\n",
"0 Royal Challengers Bangalore 1 1 DA Warner S Dhawan \n",
"1 Royal Challengers Bangalore 1 2 DA Warner S Dhawan \n",
"2 Royal Challengers Bangalore 1 3 DA Warner S Dhawan \n",
"3 Royal Challengers Bangalore 1 4 DA Warner S Dhawan \n",
"4 Royal Challengers Bangalore 1 5 DA Warner S Dhawan \n",
"... ... ... ... ... ... \n",
"150455 Sunrisers Hyderabad 20 2 Sachin Baby CJ Jordan \n",
"150456 Sunrisers Hyderabad 20 3 Sachin Baby CJ Jordan \n",
"150457 Sunrisers Hyderabad 20 4 Iqbal Abdulla Sachin Baby \n",
"150458 Sunrisers Hyderabad 20 5 Sachin Baby Iqbal Abdulla \n",
"150459 Sunrisers Hyderabad 20 6 Iqbal Abdulla Sachin Baby \n",
"\n",
" bowler ... bye_runs legbye_runs noball_runs penalty_runs \\\n",
"0 TS Mills ... 0 0 0 0 \n",
"1 TS Mills ... 0 0 0 0 \n",
"2 TS Mills ... 0 0 0 0 \n",
"3 TS Mills ... 0 0 0 0 \n",
"4 TS Mills ... 0 0 0 0 \n",
"... ... ... ... ... ... ... \n",
"150455 B Kumar ... 0 0 0 0 \n",
"150456 B Kumar ... 0 0 0 0 \n",
"150457 B Kumar ... 0 1 0 0 \n",
"150458 B Kumar ... 0 0 0 0 \n",
"150459 B Kumar ... 0 0 0 0 \n",
"\n",
" batsman_runs extra_runs total_runs player_dismissed \\\n",
"0 0 0 0 NaN \n",
"1 0 0 0 NaN \n",
"2 4 0 4 NaN \n",
"3 0 0 0 NaN \n",
"4 0 2 2 NaN \n",
"... ... ... ... ... \n",
"150455 2 0 2 NaN \n",
"150456 0 0 0 CJ Jordan \n",
"150457 0 1 1 NaN \n",
"150458 1 0 1 NaN \n",
"150459 4 0 4 NaN \n",
"\n",
" dismissal_kind fielder \n",
"0 NaN NaN \n",
"1 NaN NaN \n",
"2 NaN NaN \n",
"3 NaN NaN \n",
"4 NaN NaN \n",
"... ... ... \n",
"150455 NaN NaN \n",
"150456 run out NV Ojha \n",
"150457 NaN NaN \n",
"150458 NaN NaN \n",
"150459 NaN NaN \n",
"\n",
"[150460 rows x 22 columns]"
]
},
"execution_count": 35,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"season=df[['id','season']].merge(df2, left_on = 'id', right_on = 'match_id', how = 'left').drop('id', axis = 1)\n",
"season"
]
},
{
"cell_type": "code",
"execution_count": 36,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYMAAAEWCAYAAACEz/viAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3wVZdr4/8+VTkhCSaEFEkogdJQICAqEVQEr9i5Ydy27+rjus7j1u7vus+rafq5t7eDau2tDVIpKR+k1QCChEwiEhPTr98dM5IAJaSeZJOd6v17nlck95VwzyTnXzH3fM7eoKsYYYwJbkNcBGGOM8Z4lA2OMMZYMjDHGWDIwxhiDJQNjjDFYMjDGGIMlA+NnIqIi0svrOFoqEXlZRO7zOg7T8lgyCBAictjnVS4iR3x+v7qKdcaKSLYfY5gtIoXue+4TkfdEpJO/tl/LWKa4iesyL96/JtwYv23A7fcXkS9E5ICI5IrIUhE5u6HezzRtlgwChKpGVbyAbcB5PmWvNmIod7gx9AKigIca8b19TQb2uz9rTURC/BuOJ/4LzAQ6AAnAr4BDnkZkPGPJIMCJSLiIPCYiO9zXY25Za+AzoLPPFURnERkmIvPdM8mdIvKEiITV9n1VNRf4ABjixpHsnqn/+CXrXknc5E5PEZFvReQh90x2i4hM9Fl2iohsFpE8d16lVzvusknAGOAWYLyIdPCZFywivxORTe62lopIV3eeisjtIrIR2OiW3SwiGSKyX0Q+EpHObrmIyKMiskdEDorIChEZ4M47W0TWuNvfLiL3VBJjX+AZ4FT32Of6zG4nIp+46y8UkZ4+66WKyEw3nvVVXfmISBzQHXhOVYvd13eq+q3PMueKyDL3bz1PRAb5zJvqc4zWiMiFPvN6icgcd7/3icibPvNGishid95iERnpM2+2iPxNRL5zt/uFGyciEiEi/xGRHDeexb5/N+MHqmqvAHsBmcAZ7vRfgQU4Z4bxwDzgb+68sUD2cesOBUYAIUAysBa4y2e+Ar2qeN/ZwE3udCzwJfCh+3uyu25IFctPAUqAm4Fg4FZgByBAa5wz2j7usp2A/ifY/z8Ci9zplcDdPvN+45b1cbc9GIj12beZQHugFTAO2AecDIQD/wLmusuOB5YCbd3t9AU6ufN2Aqe70+2Ak6uIcwrw7XFlL+Nc0Qxz/wavAm+481oDWcD17ryT3fh+cizcmDYCHwOTgA7HzT8Z2AMMd4/3ZPf/JtydfynQGeeE8nIg32f/Xgd+786LAE5zy9sDB4Br3fiudH+vOL6zgU1Ab/f4zgbud+f9HOdKJtKNZygQ4/VnqSW97MrAXA38VVX3qOpe4C84H9ZKqepSVV2gqqWqmgn8G+csu6YeF5GDOF9SccAva7HuVlV9TlXLgGk4X/oVZ4flwAARaaWqO1V19Qm2cx3wmjv9GsdWFd0E/EFV16tjuarm+Mz/h6ruV9UjOMfuRVX9XlWLgHtxzuSTcRJXNJAKiKquVdWd7jZKgH4iEqOqB1T1+1ocA4D3VHWRqpbiJIMhbvm5QKaqvuT+fb4H3gUuOX4D6nzDpuN8wT8M7BSRuSKS4i5yM/BvVV2oqmWqOg0owjkRQFXfVtUdqlquqm/iJJZhPvuXBHRW1UI9erVxDrBRVV9x43sdWAec5xPaS6q6wT2+b/nsWwnOCUQvN56lqmpVWn5kycB0Brb6/L7VLauUiPQWkY9FZJeIHAL+D+dLvaZ+paptgEE4Z8WJtVh3V8WEqha4k1Gqmo9zdvoLnC+1T0QktYr4R+FUj7zhFr0GDBSRii+drjhnp1XJ8pk+5tip6mEgB+iiql8DTwBPArtF5FkRiXEXvRg4G9jqVqecWs1+H2+Xz3QBTtsLOF/Aw91qlFy3aulqoGNlG1HVbFW9Q1V7uuvmA9N9tvXr47bV1d1nROQ6nyqkXGAAR/8P/hfnymORiKwWkRsqO16urUCXGuzbK8AM4A1xqjMfFJHQqg+RqS1LBmYHzge/Qje3DJxqkeM9jXM2l6KqMcDvcD74taKqK4H7gCdFRHC+iMCpBqhQ6ZdYFduboapn4lwtrAOeq2LRyW68y0RkF7DQLb/O/ZkF9KxsxYq38pk+5tiJ084SC2x3Y3pcVYcC/XGqPn7jli9W1QtwquY+wDkDru69aiILmKOqbX1eUap6a3UrqmoWTuIa4LOtvx+3rUhVfd1tc3kOuAOniqctsAr3/0BVd6nqzaraGad65ylxuhsf/78Gzv/b9hrEV6Kqf1HVfsBInKug66pZzdSCJQPzOvAHEYl3G+v+BPzHnbcbiBWRNj7LR+PUzx92z76r/aI5gWk4X4jnu1VU24Fr3EbcGzjxl/KPRKSDiJzvfhkXAYeBskqWiwAuw2k4HuLz+iVwtTiN188DfxORFLcReJCIxFbx1q8B14vIEBEJx7lKWqiqmSJyiogMd89e84FCoExEwkTkahFpo6olOMfyJ7G6dgOJUvMG+o+B3iJyrYiEuq9T3Mbo449FOxH5i9vYG+T+7W/AaT8C58v+F+4+iIi0FpFzRCQap21Cgb3utq7naBJBRC4VkYorvgPusmXAp258V4lIiIhcDvRz4z4hEUkXkYEiEoxzzEqo+riZOrBkYO4DlgArcBpOv3fLUNV1OMlis1sd0Bm4B7gKyMP5wnizso3WhKoWA4/jNOiCU0/9G5yqlv44jdk1EQT8GufMcz9OG8ZtlSw3CTgCTHfPXnep6i7gBZxGyQnAIzhn6l/gfOm8gNOYWVn8X7mxv4vTKNwTuMKdHYNzfA7gVIXkcLQb7bVAplvN9gvgmir262tgNbBLRPZVdxBUNQ84y41hB06VywM4jdvHK8ZptP/S3c9VOIl0irutJTh/jyfcfcjwmbcGp51hPk7CGgh857PtU4CFInIY+Ai4U1W3uG0v5+L8rXJwqpPOVdVq9w3nKvEdN9a1wByOnrQYPxCnHckYY0wgsysDY4wxlgyMMcZYMjDGGIMlA2OMMTi3hDdLcXFxmpyc7HUYxhjTbMTFxTFjxowZqjrh+HnNNhkkJyezZMkSr8MwxphmpeLhf8ezaiJjjDGWDIwxxlgyMMYYQzNuMzDGtBwlJSVkZ2dTWFjodSgtRkREBImJiYSG1uzhrpYMjDGey87OJjo6muTkZJyH2Jr6UFVycnLIzs6me/fuNVrHqomMMZ4rLCwkNjbWEoGfiAixsbG1utKyZGCMaRIsEfhXbY+nVRMZ0wQUlpSxbX8Bmfvy2ba/gEGJbRnWvb3XYZkAYsnAmEaSV1jC1pwC57U/n637CsjMyWdrTgG7Dh17Od+1fSvm/ibdzpZNo7FkYIyfqCq5BSU/fsFn5uSzLefoF35OfvExy8dFhZMcG8moXnEkxUaSFBtJcmxrFmzO4R+frWPT3nx6JURV8W7Gn3Jzc3nttde47bbKxkRyZGZmMm/ePK666qoTbiszM5Nzzz2XVatW+TvMBmXJwJhaUFX25BX9+GW/1f2ir/g9r7D0x2VFoFNMBEmxrTmrfwe6tW9NcmwkSbGt6RYbSVR45R+/2Kgw/vHZOmat22PJoJHk5uby1FNPVZsMXnvttWqTQW2UlpYSEtI0voabRhTGNCFl5cqO3CNHq3Nyjtblb80p4EjJ0aF3g4OExHatSIptzUnd2pIU25qk9pEkx0WS2C6SiNDgWr9/YrtIeneIYtb6Pdw8uoc/d61Z+Mt/V7NmxyG/brNf5xj+fF7/KudPnTqVTZs2MWTIEM4880wAPvvsM0SEP/zhD1x++eVMnTqVtWvXMmTIECZPnsyFF17ItddeS35+PgBPPPEEI0eOrDaWl19+mU8++YTCwkLy8/P505/+xEMPPcTHHztDQd9xxx2kpaUxZcoUkpOTmTx5Mv/9738pKSnh7bffJjU1lTlz5nDnnXcCTkPx3LlziY6OrtcxsmRgjOuDH7bz+NcbydpfQEnZ0eFgw0KCSGrvVOOM6hVHcmwk3WKds/zObVsRGuz/TnnpqQm88M0W8gpLiI6o2U1Dpu7uv/9+Vq1axbJly3j33Xd55plnWL58Ofv27eOUU05h9OjR3H///cd8aRcUFDBz5kwiIiLYuHEjV155ZY0fnjl//nxWrFhB+/btmT179gmXjYuL4/vvv+epp57ioYce4vnnn+ehhx7iySefZNSoURw+fJiIiIj6HgJLBsYAzN+Uwz1vLye1UzQ3ntbD/cJ36vA7xkQQFNS4DbnpfRL495zNfJexjwkDOjXqe3vtRGfwjeHbb7/lyiuvJDg4mA4dOjBmzBgWL15MTEzMMcuVlJRwxx13sGzZMoKDg9mwYUON3+PMM8+kffua9Ra76KKLABg6dCjvvfceAKNGjeLuu+/m6quv5qKLLiIxMbHG710VSwYm4G3LKeC2V5eSHNea124eQUwTOBMfmtSO6IgQvl63J+CSgddUtfqFgEcffZQOHTqwfPlyysvLa3V23rp16x+nQ0JCKC8v//H3428UCw8PByA4OJjSUqdNaurUqZxzzjl8+umnjBgxgi+//JLU1NQav39l7KYzE9AOF5Vy8/QllCs8f11ak0gEAKHBQYxOiWfW+r01/nIydRcdHU1eXh4Ao0eP5s0336SsrIy9e/cyd+5chg0bdswyAAcPHqRTp04EBQXxyiuvUFZWVtXmTygpKYk1a9ZQVFTEwYMH+eqrr6pdZ9OmTQwcOJDf/va3pKWlsW7dujq9ty+7MjABq7xcueuNZWTsPcz0G4aRHNe6+pUaUXpqAp+s3MnqHYcY0KWN1+G0aLGxsYwaNYoBAwYwceJEBg0axODBgxERHnzwQTp27EhsbCwhISEMHjyYKVOmcNttt3HxxRfz9ttvk56efszZfm107dqVyy67jEGDBpGSksJJJ51U7TqPPfYYs2bNIjg4mH79+jFx4sQ6vbcvaa5nHWlpaWojnZn6ePDzdTw1exP/77x+TBlVs4d5Naa9eUWc8vcv+fWZvfnlz1K8DqdBrV27lr59+3odRotT2XEVkaWqmnb8slZNZALSh8u289TsTVw5rCuTRyZ7HU6l4qPDGZzYhq/X7/E6FBMALBmYgLM8K5f/fWcFw5Lb85fzBzTpRz6M7ZPAsqxccg4XeR2KqaUZM2YwZMiQY14XXnih12FVydoMTEDZfaiQW15ZQlxUOE9fczJhIU37fGhcagL/31cbmbtxLxeeVP/ug02ZqjbpxFxb48ePZ/z48Z69f22bAJr2J8EYPyosKeOWV5aSV1jK85PTiI0K9zqkag3s0oa4qDC+XrfX61AaVEREBDk5OdZzyk8qBrepTXdXuzIwAUFVufe9lSzPyuWZa4bSt1NM9Ss1AUFBwpjeCXy5djelZeWENMDdzk1BYmIi2dnZ7N3bspNeY6oY9rKmLBmYgPDvuZt5/4ft3H1mbyYM6Oh1OLUyLjWBd7/P5oesXE5JbpljHISGhtZ4eEbTMKo9zRCRriIyS0TWishqEbnTLf+niKwTkRUi8r6ItPVZ514RyRCR9SIy3qd8gluWISJTfcq7i8hCEdkoIm+KSJi/d9QErq/X7eaBz9dxzqBO/HJcL6/DqbXTUuIIDhJmrbNeRabh1OSasxT4tar2BUYAt4tIP2AmMEBVBwEbgHsB3HlXAP2BCcBTIhIsIsHAk8BEoB9wpbsswAPAo6qaAhwAbvTXDprAtnF3Hr96fRn9OsXw0CWDm2UDZZtWoaQlteNrSwamAVWbDFR1p6p+707nAWuBLqr6hapWPLx9AVBROXUB8IaqFqnqFiADGOa+MlR1s6oWA28AF4jz6RwHvOOuPw2Y5J/dM4HsQH4xN01fQkRoMM9dl0arsNo/TrqpSE9NYN2uPHYePOJ1KKaFqlVrlIgkAycBC4+bdQPwmTvdBcjymZftllVVHgvk+iSWivLK3v8WEVkiIkusocmcSElZObe/9j07cwv597VD6dy2ldch1cu41AQAZrXwXkXGOzVOBiISBbwL3KWqh3zKf49TlfRqRVElq2sdyn9aqPqsqqapalp8fHxNQzcB6L6P1zBvUw7/d9FAhia18zqcektJiKJL21ZWVWQaTI2SgYiE4iSCV1X1PZ/yycC5wNV6tINwNtDVZ/VEYMcJyvcBbUUk5LhyY+rktYXbmDZ/Kzef3p1LhraMG7VEhPTUeL7L2EdRad2ejmnMidSkN5EALwBrVfURn/IJwG+B81W1wGeVj4ArRCRcRLoDKcAiYDGQ4vYcCsNpZP7ITSKzgEvc9ScDH9Z/10wgWrA5hz99uIoxveOZOrFlPfhsXGoCR0rKWLh5v9ehmBaoJlcGo4BrgXEissx9nQ08AUQDM92yZwBUdTXwFrAG+By4XVXL3DaBO4AZOI3Qb7nLgpNU7haRDJw2hBf8t4smUGTtL+DW/yylW2wkj195EsGNPDpZQzu1RxzhIUHMsgfXmQZgj7A2LcLholIueXoeO3KP8MHto+gRH+V1SA1iykuLyNyXz+zfpHsdimmm7BHWpsUqL1f+581lbNidxxNXndxiEwE4YyNn5hSwZV++16GYFsaSgWn2Hpm5gZlrdvOHc/oxunfL7mWW3sfpYmq9ioy/WTIwzdp/l+/giVkZXJ7WletHJXsdToPrFhtJz/jWzLZ2A+NnlgxMs7Uy+yD3vL2ctKR2/HVS/2b5qIm6GJeawMLN+8kvKq1+YWNqyJKBaZb2HCrk5unOIDXPXDuU8JDm+6iJ2krvk0BxWTnfZuzzOhTTglgyMM1OxSA1B4+U8Ox1Q4lrBoPU+FNacnuiwkOsqsj4lSUD06yoKr97fyXLsnJ55LLB9O/cxuuQGl1YSBCnp8Qxa91eGxnM+I0lA9OsPPfNZt77fjt3nZHCxIGdvA7HM+l9Eth1qJC1O/O8DsW0EJYMTLMxa90e/vHZOs4e2JFfjUvxOhxPje3jdKG1u5GNv1gyMM1Cxp48fvX6D/TtGMNDlw4mqIU9aqK2EmIiGNAlxkY/M35jycA0ebkFxdw0bQnhoUE8NzmNyDAbuhtgXJ8Evt92gAP5xV6HYloASwamSSstK+eO135ge+4RnrlmKF2a+SA1/jQ2NYFyhbkbbcAbU3+WDEyTdt8na/k2Yx9/nzSQtOT2XofTpAxObEv71mFWVWT8wpKBabLeWLSNl+dlcsOo7lx2StfqVwgwwUHCmN7xzNmwl7Jy62Jq6seSgWmSFm3Zzx8/XMXo3vH87uxUr8NpstJTEzhQUMKyrFyvQzHNnCUD0+RkHyjgF/9ZStd2kfzrypMICbZ/06qMTokjSLCqIlNv9ikzTUp+USk3TVtCSVk5z01Oo02rUK9DatLaRoYxNKmd3W9g6s2SgWkyysuVu986OkhNzxY8SI0/pacmsHrHIXYfKvQ6FNOMWTIwTcZjX25gxurd/O7svoxp4YPU+FPFgDf24DpTH5YMTJPw8YodPP51BpcOTeTG07p7HU6zktoxmk5tImz0M1MvlgyM5zbszuOet5czNKkd9104IGAGqfEXEWFsnwS+3biP4tJyr8MxzZQlA+O5R2duIDQ4iGeuCaxBavxpXGoC+cVlLM7c73UoppmyZGA8tWnvYT5fvYvrTk0iPjqwBqnxp5E9YwkLDrKqIlNn1SYDEekqIrNEZK2IrBaRO93yS93fy0Uk7bh17hWRDBFZLyLjfconuGUZIjLVp7y7iCwUkY0i8qaIhPlzJ03T9e85mwgLDuL6UdZOUB+tw0MY3qO9dTE1dVaTK4NS4Neq2hcYAdwuIv2AVcBFwFzfhd15VwD9gQnAUyISLCLBwJPARKAfcKW7LMADwKOqmgIcAG6s956ZJm/nwSO8/8N2Lj+la8ANXdkQ0vsksHlvPltz8r0OxTRD1SYDVd2pqt+703nAWqCLqq5V1fWVrHIB8IaqFqnqFiADGOa+MlR1s6oWA28AF4jTWjgOeMddfxowqb47Zpq+57/ZQrnCzaf38DqUFmFcqtPF1O5GNnVRqzYDEUkGTgIWnmCxLkCWz+/ZbllV5bFArqqWHlde2fvfIiJLRGTJ3r322N7m7EB+Ma8v2sb5gzvTtX2k1+G0CMlxrekR15qv19tnw9RejZOBiEQB7wJ3qeqhEy1aSZnWofynharPqmqaqqbFx9tNSc3ZtPmZFBSXcevYnl6H0qKM7ZPAgs05FBSXVr+wMT5qlAxEJBQnEbyqqu9Vs3g24Pu84URgxwnK9wFtRSTkuHLTQuUXlfLyvEzO6NuB3h2ivQ6nRRmXmkBxaTnzMnK8DsU0MzXpTSTAC8BaVX2kBtv8CLhCRMJFpDuQAiwCFgMpbs+hMJxG5o9UVYFZwCXu+pOBD2u/K6a5eGNxFrkFJXZV0ABO6d6OyLBg61Vkaq0mg8mOAq4FVorIMrfsd0A48C8gHvhERJap6nhVXS0ibwFrcHoi3a6qZQAicgcwAwgGXlTV1e72fgu8ISL3AT/gJB/TAhWXlvP8N5sZ3r09Q5PaeR1OixMeEsxpveKYtW4Pqmp3c5saqzYZqOq3VF6vD/B+Fev8Hfh7JeWfAp9WUr4Zp7eRaeE+WLadnQcL+cdFA70OpcVKT03gizW7Wb87j9SOMV6HY5oJuwPZNJqycuWZOZvo1ynGnkragCqeYjprnfUqMjVnycA0mplrdrF5bz63ju1p1RcNqGObCPp2irH7DUytWDIwjUJVeWr2JpJiIzl7YCevw2nxxqXGs3TbAQ4WlHgdimkmLBmYRjFvUw4rsg/y89E9CQ6yq4KGNi41gbJyZe5GqyoyNWPJwDSKp2ZnkBAdzsVDK7253PjZkK7taBsZal1MTY1ZMjANbnlWLt9l5HDjad1tvIJGEhwkjOkdz5z1eykvr/SGfmOOYcnANLinZ28iJiKEq4Z38zqUgJLeJ4Gc/GJWbD/odSimGbBkYBpUxp7DzFizi+tOTSY6ItTrcALKmN7xiGAD3pgasWRgGtS/52wiPCSI60clex1KwGnXOoyTura1LqamRiwZmAazI/cIHyzbzuVpXYm1wWs8MS41gZXbD7Inr9DrUEwTZ8nANJgfB68ZbYPXeGWsezfybBvjwFTDkoFpEBWD11wwuDOJ7WzwGq/07xxDQnQ4s62LqamGJQPTIF6el8mRkjJ+YY+p9pSIkN4ngW827KOkrNzrcEwTZsnA+F1+USnT5tvgNU1FemoCeUWlLMk84HUopgmzZGD87vVF28gtKOG2dLsqaApOS4kjNFjsbmRzQpYMjF85g9dsYXj39pzczQavaQqiwkMY1r29dTE1J2TJwPjVBz9sZ9ehQm5L7+V1KMZHep8ENu45TNb+Aq9DMU2UJQPjN2XlyjNzN9G/cwyjU+K8Dsf4SE91B7yxqiJTBUsGxm++WG2D1zRVPeJakxQbaVVFpkqWDIxfqCpPz9lEcmwkEwfY4DVNTUUX03mbcjhSXOZ1OKYJsmRg/OK7DHfwmjE2eE1TlZ6aQFFpOQs253gdimmCLBkYv3h6jjN4zUUn2+A1TdXw7u1pFRpsTzE1lao2GYhIVxGZJSJrRWS1iNzplrcXkZkistH92c4tFxF5XEQyRGSFiJzss63J7vIbRWSyT/lQEVnprvO4WIVzs1IxeM1Np9vgNU1ZRGgwo3rFMmv9HlRtwBtzrJpcGZQCv1bVvsAI4HYR6QdMBb5S1RTgK/d3gIlAivu6BXganOQB/BkYDgwD/lyRQNxlbvFZb0L9d800lqOD1yR5HYqpRnpqAtkHjpCx57DXoZgmptpkoKo7VfV7dzoPWAt0AS4AprmLTQMmudMXANPVsQBoKyKdgPHATFXdr6oHgJnABHdejKrOV+d0ZbrPtkwTVzF4zeSRyUSFh3gdjqlGxVNMrYupOV6t2gxEJBk4CVgIdFDVneAkDCDBXawLkOWzWrZbdqLy7ErKTTNQMXjNlJHJXodiaqBL21akdoy2dgPzEzVOBiISBbwL3KWqh060aCVlWofyymK4RUSWiMiSvXvt+exe25F7hPd/2M4Vp3SzwWuakbF9EliSeYBDhSVeh2KakBolAxEJxUkEr6rqe27xbreKB/dnxalGNtDVZ/VEYEc15YmVlP+Eqj6rqmmqmhYfH1+T0E0Dev6bLQDcdHp3jyMxtTEuNYHScuXbjfu8DsU0ITXpTSTAC8BaVX3EZ9ZHQEWPoMnAhz7l17m9ikYAB91qpBnAWSLSzm04PguY4c7LE5ER7ntd57Mt00TtdwevOX+IDV7T3JzcrS0xESFWVWSOUZMWv1HAtcBKEVnmlv0OuB94S0RuBLYBl7rzPgXOBjKAAuB6AFXdLyJ/Axa7y/1VVfe707cCLwOtgM/cl2nCprmD19w6xh5T3dyEBAcxunc8s9fvpbxcCbKbBA01SAaq+i2V1+sD/KyS5RW4vYptvQi8WEn5EmBAdbGYpiG/qJSX52VyZr8OpNjgNc1Sep8EPl6xk1U7DjIosa3X4ZgmwO5ANrX2+qJtHDxSwq02pGWzNbZPPCIwa511xDAOSwamVopKy3j+my2M6GGD1zRnsVHhDE5sy9d2v4FxWTIwtfLj4DVjbfCa5i69TwIrsnPZd7jI61BME2DJwNRYWbny7zmb6d85htNt8Jpmb1xqAqowZ71VFRlLBqYWZqzexeZ9+dw2tpcNXtMC9O8cQ1xUuFUVGcCSgakhVeXp2ZvoHteaCQM6eh2O8YOgICG9TzxzN+yltKzc63CMxywZmBr5NmMfK7cf5Oeje9jgNS1IemoCeYWlLN16wOtQjMcsGZgaeXr2JjrEhHOhDV7TopyWEkdIkDDL2g0CniUDU61lWbnM25TDTaf1sMFrWpiYiFDSktsxyx5NEfAsGZhqPT07gzatQrlyeDevQzENYFxqAut357E994jXoRgPWTIwJ5SxJ48Zq3cz+dQkG7ymhUqvGPDGrg4CmiUDc0LPzNlMRGgQU0bZY6pbql4JUSS2a8Vs62Ia0CwZmCptzz3CB+7gNe1bh3kdjmkgIsK41AS+y8ihsKTM63CMRywZmCo9/81mAG4e3cPjSExDS++TwJGSMhZszvE6FOMRSwamUvvzi3ljURYXDOlCl7atvA7HNLBTe8YSHhLEbOtiGrAsGZhKvVwxeM1YuyoIBBGhwYzsGcvX6/bgDEliAo0lAzZD330AABsXSURBVPMTh4tKmTYvk7P6daBXgg1eEyjGpSawbX8Bm/flex2K8YAlA/MTb9jgNQFprHUxDWiWDMwxikrLeO6bzZzaI5aTbPCagNK1fSQpCVHMsi6mAcmSgTnGBz9sZ/ehIm5Lt6uCQJSemsCiLfs5XFTqdSimkVkyMD8qK1eembOZAV1iOK2XDV4TiNL7JFBSpny7cZ/XoZhGZsnA/GjG6l1sscFrAlpacjuiw0Os3SAAWTIwgDN4zVOzM+gR15rx/W3wmkAVGhzE6b3jmLXeupgGmmqTgYi8KCJ7RGSVT9lgEZkvIitF5L8iEuMz714RyRCR9SIy3qd8gluWISJTfcq7i8hCEdkoIm+KiD33wAPfZuxj1fZD/HyMDV4T6NL7JLAnr4jVOw55HYppRDW5MngZmHBc2fPAVFUdCLwP/AZARPoBVwD93XWeEpFgEQkGngQmAv2AK91lAR4AHlXVFOAAcGO99sjUyVOznMFrJp1kg9cEujF94gHrYhpoqk0GqjoX2H9ccR9grjs9E7jYnb4AeENVi1R1C5ABDHNfGaq6WVWLgTeAC8SpmB4HvOOuPw2YVI/9MXXww7YDzN+cw82n2+A1BhKiIxiU2Ma6mAaYurYZrALOd6cvBbq6012ALJ/lst2yqspjgVxVLT2uvFIicouILBGRJXv32jNU/OXp2Zto0yqUK4bZ4DXGMbZPAj9k5bI/v9jrUEwjqWsyuAG4XUSWAtFAxX9MZZXNWofySqnqs6qapqpp8fHxtQzZVCZjTx5frNnN5JHJNniN+dG41ARU4au1u70OxTSSOn36VXUdcBaAiPQGznFnZXP0KgEgEdjhTldWvg9oKyIh7tWB7/KmETw9ezOtQoOZMjLZ61BMEzKoSxu6tm/Fve+tZHl2Lnf+rDfx0eFeh2UaUJ2uDEQkwf0ZBPwBeMad9RFwhYiEi0h3IAVYBCwGUtyeQ2E4jcwfqdN3bRZwibv+ZODDuu6MqZ0duUf4cNl2rhjW1QavMccIChLevXUkVwzryuuLshjzz1k8MnNDwN6ZXF6ubNidx7acAg4VlrTIbrfVXhmIyOvAWCBORLKBPwNRInK7u8h7wEsAqrpaRN4C1gClwO2qWuZu5w5gBhAMvKiqq931fwu8ISL3AT8AL/hp30w1Xl24lXJVbjzNhrQ0P5UQHcF9kwZyw6juPPzFBh7/aiOvLtjKr36WwpXDuhEW0vJvUyotK+eTlTt5atYm1u/O+7E8OEho0yqUtq1CaRMZSrvIsB+n27YKo21kqPtyytu65dERIQQ10a7b0lwzXFpami5ZssTrMJqtwpIyRt7/NWlJ7Xj2ujSvwzHNwLKsXP7x6VoWbtlPUmwk95zVh3MGdmqyX271UVRaxrtLt/PMnE1s219Ar4QopoxMJjwkiINHSsgtKCH3SDEHCko46E7nutN5J7h6ChKcJBIZ5v50EkmbHxOGO88nwbSNDCU6ItRv9/+IyFJV/cmH3loMA9QnK3ayP7+YydZWYGpoSNe2vHHLCGav38sDn6/jl6//wLNzN3PvxFRGtpBnWeUXlfL6om08981mdh8qYlBiG35/zlDO7NuhxkmvpKz8x4Rx0E0SuQUlHCgo9kkkJeQWFJNzuJhNew+TW1BCXmHVSUQEYiJCaRcZSpvIMF6/eTiRYf79+rZkEKCmz8+kV0IUI3vGeh2KaUZEhPTUBEb3jueDH7bz8Bfruer5hYzuHc/UCan06xxT/UaaoNyCYqbN28pL87aQW1DCqT1iefjSIYzqFVvr53SFBgcRFxVOXFTtGtxLy8o5VFhKboF7xeGTSCqSR8V0RAPcD2TJIAAty8plefZB/nZBf3sgnamT4CDh4qGJnDOoE6/M38oTszI451/fMGlIF+4+szdd20d6HWKN7DlUyPPfbuHVBVvJLy7jjL4J3Dq2F0OTGn8sj5DgINq3DvOsM4clgwA0fV4mUeEhXHhyotehmGYuIjSYm0f34LK0rjw9ZxMvfbeFT1bs5JoRSdwxrleT7aW2LaeAf8/dxNtLsyktK+fcQZ25dWxP+nZqnlc2/mDJIMDsO1zExyt2ctXwbnaTmfGbNpGhTJ2YynWnJvHYlxt4ed4W3l6SxS/G9uSGUd1pFdY0HnOyYXceT8/exEfLdxAsztXNz0f3IDmutdehec6+DQLMG4u2UVxWzjUjkrwOxbRAndu24sFLBnPT6T148PN1/HPGeqbNy+R/zuzNpUMTCQn2pjvqsqxcnpqVwRdrdtMqNJjrRyZz0+k96NgmwpN4miLrWhpASsvKOe2BWaR0iOKVG4d7HY4JAIu27Of+z9by/bZcesa35n8npHJWvw6N0lalqszflMOTszP4LiOHmIgQpozqzvUjk2nXRKuvGoN1LTXMXLObXYcK+dukAV6HYgLEsO7teffWkcxYvZsHZ6zj568sZWhSO+6dmEpacvsGec/ycuWrdXt4clYGy7JyiY8O596JqVw9IsmqRk/AjkwAmTY/k8R2rRiXmuB1KCaAiAgTBnTkjL4JvLUkm8e+3MAlz8znjL4d+O2EPqR0iPbL+xx/t3Biu1bcN2kAlwxNJCK0abRZNGWWDALE+l15LNi8n3snptpIZsYTIcFBXDW8G5NO6syL327hmTmbGf/YXC4d2pW7zkyhU5tWddru8XcLpyRE8ejlgzlvUGfP2iiaI0sGAWL6/EzCQ4K4LK1rtcsa05Aiw0K4Y1wKVw1P4omvM3hlQSYfLNvODad15xdjetKmVWiNtlNxt/CzczezJ6+IwXW4W9gcZckgABw8UsJ732/ngiGdA7rhzDQt7VuH8afz+nH9qGQe/mI9T8/exOuLtnFHei+uGZFUZdVObkExL8/L5OV5meQWlDCyZyyPXFa3u4XNUZYMAsA7S7M5UlLGdacmex2KMT/RtX0kj11xEjed3oMHPl/HfZ+s5aXvMrn7zN5MOqnLj9WaP71buAO3pffk5G6Nf7dwS2RdS1u48nJl3MOziY0K591bR3odjjHV+nbjPu7/fC2rth8itWM0t6f3YsHmHN5ekk1peTnnDXbuFk7tGLh3C9eHdS0NUHM37iUzp4C7z+rjdSjG1MhpKXF81PM0Pl65k4dmrOeXr/9AWHAQFw9N5BdjepAUa3cLNwRLBi3c9PlbiY8OZ0L/jl6HYkyNBQUJ5w/uzIT+Hflm4176d25jdws3MEsGLdjWnHxmrd/Dr8alBMSoVKblCQsJ4md9O3gdRkCwb4gW7JX5WwkW4arh3bwOxRjTxFkyaKEKikt5a0kWEwZ0pEOMXV4bY07MkkEL9eGyHRwqLGWKDWtpjKkBSwYtkKoybV4m/TrFeDJikzGm+bFk0AItzjzAul15TB6ZZHdkGmNqxJJBCzRtfiZtWoVy/uAuXodijGkmqk0GIvKiiOwRkVU+ZUNEZIGILBORJSIyzC0XEXlcRDJEZIWInOyzzmQR2ei+JvuUDxWRle46j4udytbLroOFfL5qF5ef0rXJDDVojGn6anJl8DIw4biyB4G/qOoQ4E/u7wATgRT3dQvwNICItAf+DAwHhgF/FpGKyuyn3WUr1jv+vUwtvLZwK+WqXDPchrU0xtRctclAVecC+48vBioeDNIG2OFOXwBMV8cCoK2IdALGAzNVdb+qHgBmAhPceTGqOl+dhyRNBybVe68CVFFpGa8t2sbPUhPoFhvpdTjGmGakrncg3wXMEJGHcBJKxRPQugBZPstlu2UnKs+upLxSInILzlUE3brV7UaqkrJySsrKiQxreTdff75qF/sOF9vTSY0xtVbXBuRbgf9R1a7A/wAvuOWV1fdrHcorparPqmqaqqbFx8fXMmQnEVzyzHz+30era71uczBtXiY94lpzWq84r0MxxjQzdU0Gk4H33Om3cdoBwDmz9x1KKxGnCulE5YmVlDeI0OAgRvaM5a0l2Xy9bndDvY0nVmYf5PttuVx7apKN8mSMqbW6JoMdwBh3ehyw0Z3+CLjO7VU0AjioqjuBGcBZItLObTg+C5jhzssTkRFuL6LrgA/rujM1cdcZKfTpEM3Ud1eSW1DckG/VqKbNzyQyLJiLhyZWu6wxxhyvJl1LXwfmA31EJFtEbgRuBh4WkeXA/+HW4wOfApuBDOA54DYAVd0P/A1Y7L7+6paBU+X0vLvOJuAz/+xa5cJDgnn4ssHk5Bfzl/+uaci3ajT784v5aPkOLj45kZiImo0fa4wxvqptRVXVK6uYNbSSZRW4vYrtvAi8WEn5EmBAdXH404Aubbg9vRePf7WRCQM6Mr6ZP+v/zcVZFJeWc92p1p3UGFM3AXsH8h3pvejXKYbfv7+S/fnNt7qorFz5z4KtjOwZS0qHaK/DMcY0UwGbDMJCgnjk8sEcPFLCHz9YVf0KTdRXa3ezPfeIdSc1xtRLwCYDgNSOMdx1Rm8+WbmT/y5vsE5MDWr6/K10bhPBGX0TvA7FGNOMBXQyAPj56B4MTmzDHz9cxZ68Qq/DqZWMPXl8m7GPq0ckERIc8H9KY0w9BPw3SEhwEA9fNpiC4jJ+//4qnDbw5mH6/K2EhQRxxSldq1/YGGNOIOCTAUCvhGjuOas3M9fs5v0ftnsdTo3kFZbw7tJszhvUmdiocK/DMcY0c5YMXDee1oO0pHb8+aPV7DrY9KuL3vt+O/nFZUwead1JjTH1Z8nAFRwk/PPSwZSUlfPbd1c06eoiVWXa/EyGdG3LoMS2XodjjGkBLBn46B7Xmt9OSGXOhr28tSSr+hU88l1GDpv35ttVgTHGbywZHGfyqcmM6NGev328luwDBV6HU6mX52USFxXG2QM7eR2KMaaFsGRwnKAg4Z+XDEZV+e27Kygvb1rVRVn7C/hq3W6uHNaN8BAb1tIY4x+WDCrRtX0kvzunL99l5PDqwq1eh3OM/yzcSpAIVw2v2+A+xhhTGUsGVbhqWDdOT4nj/z5dx7acplFdVFhSxpuLsxjfvwOd2rTyOhxjTAtiyaAKIsIDFw8iJEi4553lTaK66KPlO8gtKLHnEBlj/M6SwQl0btuKP57Xj0Vb9vPSvExPY1FVps3LpE+HaIZ3b+9pLMaYlseSQTUuHZrIz1ITePDzdWzae9izOL7fdoDVOw4xeWQyzqBwxhjjP5YMqiEi/OOigUSEBnPP28sp86i6aNq8rURHhDDppM6evL8xpmWzZFADCTER/PWC/vywLZfnvtnc6O+/51Ahn67cyWVpXYkMq3ZwOmOMqTVLBjV0/uDOjO/fgUe+2MCG3XmN+t6vL8qitFy5doTdcWyMaRiWDGpIRPj7hQOJigjh128tp6SsvFHet6SsnFcXbmVsn3iS41o3ynsaYwKPJYNaiIsK575JA1i5/SBPz97UKO/5+apd7MkrYrJ1JzXGNCBLBrV09sBOnDe4M49/tZHVOw42+PtNn59JUmwkY3rHN/h7GWMCV7XJQEReFJE9IrLKp+xNEVnmvjJFZJnPvHtFJENE1ovIeJ/yCW5ZhohM9SnvLiILRWSju90wf+5gQ/jr+f1pGxnGr99aTnFpw1UXrd5xkMWZB7h2RBJBQdad1BjTcGpyZfAyMMG3QFUvV9UhqjoEeBd4D0BE+gFXAP3ddZ4SkWARCQaeBCYC/YAr3WUBHgAeVdUU4ABwY733qoG1ax3GPy4ayLpdefzr640N9j6vzN9Kq9BgLh1qw1oaYxpWtclAVecC+yubJ87dT5cBr7tFFwBvqGqRqm4BMoBh7itDVTerajHwBnCBu/444B13/WnApHrsT6M5s18HLjq5C0/N3sTyrFy/bz+3oJgPlm1n0kldaBMZ6vftG2OMr/q2GZwO7FbVitPjLoDvqDDZbllV5bFArqqWHldeKRG5RUSWiMiSvXv31jP0+vvzef2Jjwrn128vp7CkzK/bfntJNoUl5TaAjTGmUdQ3GVzJ0asCgMoqtrUO5ZVS1WdVNU1V0+LjvW9QbdMqlPsvHkjGnsM8+uUGv223rFyZviCT4d3bk9oxxm/bNcaYqtQ5GYhICHAR8KZPcTbgW8GdCOw4Qfk+oK27Ld/yZmNsnwSuOKUrz83dzNKtB/yyzdnr95C1/wiTRyb7ZXvGGFOd+lwZnAGsU9Vsn7KPgCtEJFxEugMpwCJgMZDi9hwKw2lk/kidUednAZe4608GPqxHTJ74/Tl96dSmFfe8vZwjxfWvLpo2fysdYyI4s18HP0RnjDHVq0nX0teB+UAfEckWkYrePldwbBURqroaeAtYA3wO3K6qZW6bwB3ADGAt8Ja7LMBvgbtFJAOnDeGF+u9W44qOCOWflwxiy758Hpyxrl7b2rz3MHM37OXq4d0IDbbbQIwxjaPap56p6pVVlE+povzvwN8rKf8U+LSS8s04vY2atZG94rju1CRe+i6T8f07MqJHbJ2288qCrYQGC1cMs2EtjTGNx049/WjqxFS6tY/kN+8sJ7+otPoVjpNfVMo7S7I5Z2An4qPDGyBCY4ypnCUDP4oMC+GhSweTfeAI//hsba3Xf++H7eQVlVrDsTGm0Vky8LNh3dtzw6ju/GfBNr7duK/G66kq0+dlMiixDUO6tm3ACI0x5qcsGTSA34zvQ4/41vzvO8s5VFhSo3Xmb85h457DXHeqDWtpjGl8lgwaQERoMA9fOphdhwr5+8c1qy6aPm8r7SJDOXdQpwaOzhhjfsqSQQM5qVs7fj6mJ28uyWLWuj0nXHZ77hG+WLOLK4Z1IyI0uJEiNMaYoywZNKC7zkihd4copr63goMFVVcXvbZwKwBXD7fupMYYb1gyaEDhIcE8fOkQ9h0u5v/9d3WlyxSWlPH6oizO7NeBxHaRjRyhMcY4LBk0sIGJbbg9vRfv/7CdGat3/WT+Jyt2sj+/2Ia1NMZ4ypJBI7gjvRf9OsXw+/dXsj+/+Jh50+dn0ishilN71u2OZWOM8QdLBo0gLCSIhy8bzMEjJfzxwx9HD2VZVi7Lsw8y+dQk605qjPGUJYNG0rdTDHf+LIVPVuzk4xXOU7qnz8skKjyEC09O9Dg6Y0ygs2TQiH4xpieDE9vwxw9WsW7XIT5esZNLhiYSFV7t8wKNMaZBWTJoRCHBTnVRfnEZlz0zn+Kycq491Ya1NMZ4z5JBI+uVEM09Z/XmUGEpp6fE0TM+yuuQjDGm+vEMjP/deFoPjhSXc/bAjl6HYowxgCUDTwQHCXeekeJ1GMYY8yOrJjLGGGPJwBhjjCUDY4wxWDIwxhiDJQNjjDFYMjDGGIMlA2OMMVgyMMYYA4iqeh1DnYjIXmBrHVePA/b5MZzmzo7HUXYsjmXH46iWcCz2AajqhONnNNtkUB8iskRV07yOo6mw43GUHYtj2fE4qqUfC6smMsYYY8nAGGNM4CaDZ70OoImx43GUHYtj2fE4qkUfi4BsMzDGGHOsQL0yMMYY48OSgTHGmJaRDESkq4jMEpG1IrJaRO50y9uLyEwR2ej+bOeWi4g8LiIZIrJCRE722daD7jbWusuIV/tVV3U4HqkiMl9EikTknuO2NUFE1rvHaqoX+1Mf/joWVW2nufHn/4Y7P1hEfhCRjxt7X/zBz5+VtiLyjoisc7d3qhf7VGeq2uxfQCfgZHc6GtgA9AMeBKa65VOBB9zps4HPAAFGAAvd8pHAd0Cw+5oPjPV6/xrheCQApwB/B+7x2U4wsAnoAYQBy4F+Xu+fR8ei0u14vX9eHQ+f7d0NvAZ87PW+eX08gGnATe50GNDW6/2rzatFXBmo6k5V/d6dzgPWAl2AC3D+QLg/J7nTFwDT1bEAaCsinQAFInD+kOFAKLC70XbET2p7PFR1j6ouBkqO29QwIENVN6tqMfCGu41mw1/H4gTbaVb8+L+BiCQC5wDPN0LoDcJfx0NEYoDRwAvucsWqmtsoO+EnLSIZ+BKRZOAkYCHQQVV3gvNHx8nq4Pyxs3xWywa6qOp8YBaw033NUNW1jRN5w6jh8ahKpcfJ/1E2jnoei6q202z54Xg8BvwvUN5AITaqeh6PHsBe4CW32ux5EWndgOH6XYtKBiISBbwL3KWqh060aCVlKiK9gL5AIs6X3jgRGe3/SBtHLY5HlZuopKxZ9kX2w7Hw63a8Vt/9EJFzgT2qutTvwXnAD3/XEOBk4GlVPQnIx6leajZaTDIQkVCcP+arqvqeW7zbrf7B/bnHLc8GuvqsngjsAC4EFqjqYVU9jNOuMKIx4ve3Wh6PqlR1nJoVPx2LqrbT7PjpeIwCzheRTJzqw3Ei8p8GCrlB+fGzkq2qFVeL7+Akh2ajRSQDt8fPC8BaVX3EZ9ZHwGR3ejLwoU/5dW6vohHAQfdScBswRkRC3H+QMTh1iM1KHY5HVRYDKSLSXUTCgCvcbTQb/joWJ9hOs+Kv46Gq96pqoqom4/xffK2q1zRAyA3Kj8djF5AlIn3cop8Ba/wcbsPyugXbHy/gNJzqixXAMvd1NhALfAVsdH+2d5cX4EmcnjIrgTS3PBj4N04CWAM84vW+NdLx6IhzZnMIyHWnY9x5Z+P0sNgE/N7rffPqWFS1Ha/3z8v/DZ9tjqX59iby52dlCLDE3dYHQDuv9682L3schTHGmJZRTWSMMaZ+LBkYY4yxZGCMMcaSgTHGGCwZGGOMwZKBMcYYLBkYY4zBkoExxxCR1iLyiYgsF5FVInK5iAwVkTkislREZvg8puBmEVnsLvuuiES65Ze66y4XkbluWYSIvCQiK90HmaW75VNE5D0R+dx9dv6D3u29CWR205kxPkTkYmCCqt7s/t4G5xlVF6jqXhG5HBivqjeISKyq5rjL3QfsVtV/ichKdxvbRaStquaKyK+BAap6vYikAl8AvXEe5fAnnKdlFgHrgdNUNQtjGlGI1wEY08SsBB4SkQeAj4EDwABgpvMYG4JxHm8OMMBNAm2BKGCGW/4d8LKIvAVUPPjsNOBfAKq6TkS24iQDgK9U9SCAiKwBkjj20eHGNDhLBsb4UNUNIjIU5/k0/wBmAqtVtbIhDF8GJqnqchGZgvOMHlT1FyIyHGfgl2UiMoTKHwdeochnugz7XBoPWJuBMT5EpDNQoKr/AR4ChgPxFePZikioiPR3F48GdrpPuL3aZxs9VXWhqv4J2IfzGPC5FcuISG+gG06VkDFNgp2BGHOsgcA/RaQcZ2jDW4FS4HG3/SAEZ4Sv1cAfcUbF2opTvRTtbuOfIpKCczXwFc7Y0euAZ9z2hFJgiqoWuVVPxnjOGpCNMcZYNZExxhhLBsYYY7BkYIwxBksGxhhjsGRgjDEGSwbGGGOwZGCMMQb4/wEgb/BVukDtawAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"season=season.groupby(['season'])['total_runs'].sum().reset_index()\n",
"season.set_index('season').plot()\n",
"plt.title('Total Runs Across the Seasons')\n",
"plt.show()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### There was a decline in total runs from 2008 to 2009.But there after there was a increase in runs in every season until 2013, but from next season there was a slump in the total runs. But the number of matches are not equal in all seasons. We should check the average runs per match in each season"
]
},
{
"cell_type": "code",
"execution_count": 37,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" season \n",
" matches \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 2008 \n",
" 58 \n",
" \n",
" \n",
" 1 \n",
" 2009 \n",
" 57 \n",
" \n",
" \n",
" 2 \n",
" 2010 \n",
" 60 \n",
" \n",
" \n",
" 3 \n",
" 2011 \n",
" 73 \n",
" \n",
" \n",
" 4 \n",
" 2012 \n",
" 74 \n",
" \n",
" \n",
" 5 \n",
" 2013 \n",
" 76 \n",
" \n",
" \n",
" 6 \n",
" 2014 \n",
" 60 \n",
" \n",
" \n",
" 7 \n",
" 2015 \n",
" 59 \n",
" \n",
" \n",
" 8 \n",
" 2016 \n",
" 60 \n",
" \n",
" \n",
" 9 \n",
" 2017 \n",
" 59 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" season matches\n",
"0 2008 58\n",
"1 2009 57\n",
"2 2010 60\n",
"3 2011 73\n",
"4 2012 74\n",
"5 2013 76\n",
"6 2014 60\n",
"7 2015 59\n",
"8 2016 60\n",
"9 2017 59"
]
},
"execution_count": 37,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"avg_runs=df.groupby(['season'])['id'].count().reset_index().rename(columns={'id':'matches'})\n",
"avg_runs"
]
},
{
"cell_type": "code",
"execution_count": 38,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" season \n",
" total_runs \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 2008 \n",
" 17937 \n",
" \n",
" \n",
" 1 \n",
" 2009 \n",
" 16353 \n",
" \n",
" \n",
" 2 \n",
" 2010 \n",
" 18883 \n",
" \n",
" \n",
" 3 \n",
" 2011 \n",
" 21154 \n",
" \n",
" \n",
" 4 \n",
" 2012 \n",
" 22453 \n",
" \n",
" \n",
" 5 \n",
" 2013 \n",
" 22602 \n",
" \n",
" \n",
" 6 \n",
" 2014 \n",
" 18931 \n",
" \n",
" \n",
" 7 \n",
" 2015 \n",
" 18353 \n",
" \n",
" \n",
" 8 \n",
" 2016 \n",
" 18862 \n",
" \n",
" \n",
" 9 \n",
" 2017 \n",
" 18786 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" season total_runs\n",
"0 2008 17937\n",
"1 2009 16353\n",
"2 2010 18883\n",
"3 2011 21154\n",
"4 2012 22453\n",
"5 2013 22602\n",
"6 2014 18931\n",
"7 2015 18353\n",
"8 2016 18862\n",
"9 2017 18786"
]
},
"execution_count": 38,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"season"
]
},
{
"cell_type": "code",
"execution_count": 39,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" season \n",
" matches \n",
" total_runs \n",
" \n",
" \n",
" \n",
" \n",
" 0 \n",
" 2008 \n",
" 58 \n",
" 17937 \n",
" \n",
" \n",
" 1 \n",
" 2009 \n",
" 57 \n",
" 16353 \n",
" \n",
" \n",
" 2 \n",
" 2010 \n",
" 60 \n",
" 18883 \n",
" \n",
" \n",
" 3 \n",
" 2011 \n",
" 73 \n",
" 21154 \n",
" \n",
" \n",
" 4 \n",
" 2012 \n",
" 74 \n",
" 22453 \n",
" \n",
" \n",
" 5 \n",
" 2013 \n",
" 76 \n",
" 22602 \n",
" \n",
" \n",
" 6 \n",
" 2014 \n",
" 60 \n",
" 18931 \n",
" \n",
" \n",
" 7 \n",
" 2015 \n",
" 59 \n",
" 18353 \n",
" \n",
" \n",
" 8 \n",
" 2016 \n",
" 60 \n",
" 18862 \n",
" \n",
" \n",
" 9 \n",
" 2017 \n",
" 59 \n",
" 18786 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" season matches total_runs\n",
"0 2008 58 17937\n",
"1 2009 57 16353\n",
"2 2010 60 18883\n",
"3 2011 73 21154\n",
"4 2012 74 22453\n",
"5 2013 76 22602\n",
"6 2014 60 18931\n",
"7 2015 59 18353\n",
"8 2016 60 18862\n",
"9 2017 59 18786"
]
},
"execution_count": 39,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"final=pd.concat([avg_runs,season.iloc[:,1]],axis=1)\n",
"final"
]
},
{
"cell_type": "code",
"execution_count": 40,
"metadata": {},
"outputs": [],
"source": [
"final['per_match_runs']=final['total_runs']/final['matches']\n",
"final.set_index('season',inplace=True)"
]
},
{
"cell_type": "code",
"execution_count": 41,
"metadata": {},
"outputs": [
{
"data": {
"text/html": [
"\n",
"\n",
"
\n",
" \n",
" \n",
" \n",
" matches \n",
" total_runs \n",
" per_match_runs \n",
" \n",
" \n",
" season \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" \n",
" 2008 \n",
" 58 \n",
" 17937 \n",
" 309.258621 \n",
" \n",
" \n",
" 2009 \n",
" 57 \n",
" 16353 \n",
" 286.894737 \n",
" \n",
" \n",
" 2010 \n",
" 60 \n",
" 18883 \n",
" 314.716667 \n",
" \n",
" \n",
" 2011 \n",
" 73 \n",
" 21154 \n",
" 289.780822 \n",
" \n",
" \n",
" 2012 \n",
" 74 \n",
" 22453 \n",
" 303.418919 \n",
" \n",
" \n",
" 2013 \n",
" 76 \n",
" 22602 \n",
" 297.394737 \n",
" \n",
" \n",
" 2014 \n",
" 60 \n",
" 18931 \n",
" 315.516667 \n",
" \n",
" \n",
" 2015 \n",
" 59 \n",
" 18353 \n",
" 311.067797 \n",
" \n",
" \n",
" 2016 \n",
" 60 \n",
" 18862 \n",
" 314.366667 \n",
" \n",
" \n",
" 2017 \n",
" 59 \n",
" 18786 \n",
" 318.406780 \n",
" \n",
" \n",
"
\n",
"
"
],
"text/plain": [
" matches total_runs per_match_runs\n",
"season \n",
"2008 58 17937 309.258621\n",
"2009 57 16353 286.894737\n",
"2010 60 18883 314.716667\n",
"2011 73 21154 289.780822\n",
"2012 74 22453 303.418919\n",
"2013 76 22602 297.394737\n",
"2014 60 18931 315.516667\n",
"2015 59 18353 311.067797\n",
"2016 60 18862 314.366667\n",
"2017 59 18786 318.406780"
]
},
"execution_count": 41,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"final"
]
},
{
"cell_type": "code",
"execution_count": 42,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 42,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXcAAAEGCAYAAACevtWaAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3dd3xcV5nw8d8z6n00smzLKpbi3iXbkh0SkuAECAmLCSSkLJBsWPIGkqUuS1t4F3Z536W/lEAIKQRC7EAKKZRsYqeQZsndkiX3omZJluUZ9TJz3j/mypFldU2f5/v5zEejO3funLmSHt15zjnPEWMMSimlIost2A1QSinlexrclVIqAmlwV0qpCKTBXSmlIpAGd6WUikCxwW4AwIwZM0xhYWGwm6GUUmFlx44dp40x2SM9FhLBvbCwkO3btwe7GUopFVZE5MRoj2laRimlIpAGd6WUikAa3JVSKgJpcFdKqQikwV0ppSKQBnellIpAGtyVUioCaXBXSqkgMMbwWMVJXqpp9svxNbgrpVSAdfYO8PnHdvPlJ/bxxM46v7xGSMxQVUqpaFHd6OKuR3dy/HQnX3z3Qj79rvl+eR0N7kopFQDeNEwt//uZKjKS4nj0k+tZf1GW315Pg7tSSvlZR+8AX39qH0/vbuCdC2bw4xuLmZGa4NfX1OCulFJ+VN3o4q7f7+R4ayf/+p6FfPqK+dhs4vfX1eCulFJ+YIxhc0Ut/xGgNMxwGtyVUsrHgpGGGU6Du1JK+dD+Bhd3P+pNw3zpvYv41OXzApKGGU6Du1JK+YAxhk3ltfzHs1XYk+LY9Mn1rAtgGmY4De5KKTVNHb0DfO3JfTyzJ3hpmOE0uCul1DTsb/BOSjoR5DTMcBrclVJqCoamYTKTg5+GGU6Du1JKTVJ7Tz9fe6qSZ/c0cNnCbH78kVVkBTkNM5wGd6WUmoSqBid3P7or5NIww2lwV0qpCTDG8Gj5Sb717P6QTMMMp8FdKaXG0d7Tz1ef3MdzextDNg0znAZ3pZQaQ1WDk7t+v5OTZ7pCOg0znC7WoVQU8HgMbxw+zYDbE+ymhA1jDI+8dYLrfvEGPf0eNt9xMXe9KzBFv3xh3OAuIokiUi4ie0SkSkS+ZW2/W0QOi4gRkRlD9r9CRJwistu6fdOfb0ApNb6n99Rzy/3b+KffVODs6g92c0Jee08//7JpF//+p0ouviiLP3/mUsqKHMFu1qRMJC3TC2wwxnSISBzwmoj8FXgdeA54eYTn/N0Y837fNVMpNR0v7G8iNSGWt462ct0vXufXt65lXnZqsJsVkirrndz96E5q27r5t6sXcedl4ZGGGW7cK3fj1WF9G2fdjDFmlzHmuD8bp5Savr4BD68ePM0/rMrh9/+8Hmd3Px+853VePdgS7KaFFGMMv3vrBB/6pTcNs+mT6wNWe90fJpRzF5EYEdkNNAMvGGO2jfOUi600zl9FZNm0W6mUmrKK42fo6B3gysWzKCty8PTdl5BrT+K2h8p58LVjGGOC3cSga+/p5+5Nu/hGGKdhhptQcDfGuI0xxUAeUCYiy8fYfScw1xizCvgZ8KeRdhKRO0Rku4hsb2nRKwhfaOvso+aUK9jNUCFmS3UzCbE2Lpnv7RrLy0zmiU+9g6uWzOLbz+3nK0/so3fAHeRWBk9lvZP3/+w1/lZ5ii9fvZiHbisN+WGOEzGp0TLGmLN4c+xXj7GPazCNY4z5CxA3tMN1yH73GWPWGmPWZmdnT67VakTf/58D3PDLN3VEhDrHGMOWmibeMS+LpPiYc9tTEmK596Nr+JcN83lsey0fvX8bpzt6g9jSwDuXhvnFG/T2e9h8x3o+dUV45tdHMpHRMtkiYrfuJwFXATVj7D9bRMS6X2a9RqtvmqvGsqf2LO29Axxoag92U1SIOHq6kxOtXWxYMuuCx2w24YvvWcRPby5hb52TjT9/nf0N0fHJb2ga5h3zs/jLZ99JaWF4p2GGm8iVew7wkojsBSrw5tyfE5HPiEgd3lTNXhG539r/eqBSRPYAPwVuMprU87u+AQ8HraC+u/ZskFujQsWW6iYANiyeOeo+H1g1hz/eeTFuj+H6e9/gb5WnAtW8gDPG8Nd9jbz7R6+eS8M8eGspjpT4YDfN58YdCmmM2QuUjLD9p3iD9/DtPwd+7pPWqQk72NROv9v7P3TXybP847q5QW6RCgVbqptZPDuNXHvSmPutzLPzzN2X8Mnf7eDOR3bwxXcv5O4N87E+hEeEE62dfPPpKl452MKSnHR++dHVlBRkBrtZfqPlByJEVYMTgIuyU/TKXQHg7Opn+4k2PnX5vAntPzM9kcfuWM9Xn9zHD184yIGmdr5//arzcvXhqHfAza9eOco9Lx0m1iZ84/1LufXiucTGRPYEfQ3uEaKqwUVqQiwbV+Xy4xcP4uzuJyMpLtjNUkH0yqEW3B7DhiWjp2SGS4yL4UcfWcXCWWl87/kaTrR2cd/H15CTMfaVf6h67dBpvvF0JcdOd3Ltyhy+ce1SZmckBrtZARHZ/7qiSGW9k6U56ayeawdgb51evUe7rdVNZKXEsyrPPqnniQifumIev/7YWo62dPCBn7/OrpNtfmqlfzS7eviXTbv46APbMMbw29vLuOeW1VET2EGDe0RwewzVje0sy01npfWHvPukBvdoNuD28PLBFq5YNJOYKQ7tu2rpLJ666xKS4mK48b63eGpXnY9b6XsDbg8PvX6MDT98heerTvG5qxbwt89dxmULo2+4taZlIsCx0x1097tZNieDjKQ45mnePertPHmWs139XDmJlMxIFs5K4093XcKnf7+Dzz+2hwOnOvjSexdN+R+GP+2uPcvXn9pHVYOLdy6Ywbc3LqdoRkqwmxU0GtwjQGW9d2zy8tx0AEoKMtla04wxJqJGO6iJ21LTRFyM8M4FF8wfnDRHSjy/+8Q6/uOZKu595QiHmtr5fzcVk5YYGn06zq5+vvt8DZvKTzIzLYF7blnNNStmR/3vvqZlIkBVg5OEWBvzrSp/xfl2znT2UXumO8gtU8GytbqZdUVZPgvAcTE2vnPdCv5z4zJePtjCh37xBidbu3xy7KkyxvD4jjo2/PBlHquo5fZLinjxC5dz7cqcqA/soME9IlTWu1g8O+3c0K7ifG/efVdteHWCKd842drFoeaOMScuTdXHLi7kt7eX0dzeywfueY03jpz2+WtMxMGmdm687y3+9Y97mJuVzLN3X8o33r80ZD5NhAIN7mHOGENVg5NluRnnti2enUZinI1d2qkalbbWeGelTjffPppL5s/g6bsuYUZqAh9/oJxH3jrhl9cZSVffAP/91xqu+cnfOdjUzn9/aAWP3/kOls5JD1gbwoXm3MNcXVs3rp4Blg355Y6NsbEy166dqlFqS00z87JTmJvlv87EwhkpPPnpd/BZa7WiA6fa+eY/LCXOjxOD/qfqFN96dj/1Z7v5yNo8vnz14oio3ugveuUe5irrvTNTl8/JOG97cYGd/Q2uqC7lGo06egfYdvQMV45QKMzX0hPjuP/WUu647CJ+99YJbn2wnLNdfT5/ndozXfzzwxXc8bsdpCbE8sc7L+Z716/SwD4ODe5hrqrBRYxNWDQ77bztJfl2+tyeqKnyp7xeO9RCn9vjl3z7SGJswteuWcIPbljF9uNtbLzndQ75qCpp34CHe146zLt//ApvHGnla9cs5rnPXBpx1Rv9RYN7mKtscLJgZiqJcefX/ygusCYzaWomqmypbiY9MZa1cwNbEOv6NXlsumM9nb1urvvFG7xU0zyt471x5DTv+8mrfP/5A1yxcCYvfuFy7rhsnl/TPpFGz1SYq2pwsWxYSgYgJyOJWekJGtyjiMdjeOlAM1csmhmUolhr5mbyzN2XMDcrmdsfruC+V49Megm/lvZePv/Ybm759Tb63B4euq2Uez+2hjnjVLVUF9IO1TDW7Oqhpb33vM7UoUryM3XETBTZW+/kdEef30bJTMQcexJ/vPNivvTHvfyfv9RQc6qd/3Pdigs+WQ7n9hge3XaC7z1/gJ5+N/+yYT53vWv+uM9To9PgHsYqrTK/y3MvvHIHb2rmb1WnaO3o1c6nKLC1ugmbwOVBrqOSHB/Lz28pYeGWNH784kGOne7kVx9bw8y0kYt27a07y7//qZK9dU4umZ/FtzcuZ541IU9NnaZlwliVVXZgtDG+JdZkpj1aITIqvFjdzNq5DuzJwV9VSET47FUL+OU/rqamsZ2NP3/93MiuQc7ufr75dCUb73mdRmcPP7mpmEc+sU4Du49ocA9jlQ1OimakkJow8gewFXkZxNhEUzNRoNHZzf5G16RqtwfC+1bk8PinLkaA6+99gz/vbcQYw5921XPlD1/hkbdOcOvFhWz54uVsLM7VsgE+pGmZMFbV4DpXamAkyfGxLJyVpp2qUWCrNTrlygANgZyMZXMyePruS7nzkR3c9ehOFs9Oo+ZUO6vyMnjotlJW5I2cVlTTo1fuYepsVx91bd0jjpQZqqTAO1PV49E1yiPZ1upmChzJzJ8ZmimN7LQEHv3kOm5cm0+Tq4f/+uBynvz0JRrY/UiDe5iqaji/zO9oivPttPcMcPR0RyCapYKgu8/Na4dPs2HxzJBOayTExvDd61ey8xvv5qPr54ZkTfhIosE9TA0uiD3ulftghUjNu0esN4+epnfAE9QhkJMRyv+AIokG9zBVWe9iTkYijpSxR0bMy04lLSFW8+4R7MXqZlLiYygr0mn56m3jBncRSRSRchHZIyJVIvIta/vdInJYRIyIzBiyv4jIT63H9orIan++gWg1vMzvaGw2YVW+Xa/cI5Qxhq3VzbxzQTYJsTrhR71tIlfuvcAGY8wqoBi4WkTWA68DVwHDizm/D1hg3e4Afum75iqAzt4Bjp7uHHVm6nDF+XYONLXT3acVIiPN/kYXp1w9ITcEUgXfuMHdeA32xsVZN2OM2WWMOT7CUzYCv7We9xZgF5Ecn7VYUd3owpgLy/yOpqTAjttj2DdsEokKf1urmxGBdy3S4K7ON6Gcu4jEiMhuoBl4wRizbYzdc4HaId/XWduGH/MOEdkuIttbWlom0+ao9/ZImYkF93PL7p3UZfcizZaaZlbl2clO0/IS6nwTCu7GGLcxphjIA8pEZPkYu4/UFX7BIGtjzH3GmLXGmLXZ2cGthRFuKuudZKXEMyt9Yn/QWakJ5DuStFM1wrS097Kn7mxITlxSwTep0TLGmLPAy8DVY+xWB+QP+T4PaJh0y9SoqhpcLMvNmNSQspL8TA3uEeblA80Yg+bb1YgmMlomW0Ts1v0kvJ2oNWM85Rng49aomfWA0xjT6JPWDmOM4URrZ1R1FPYOuDnY1D7hztRBxfl2Gp09nHL2+KllKtC2VDczOz2RpTm6OLS60ESu3HOAl0RkL1CBN+f+nIh8RkTq8F6Z7xWR+639/wIcBQ4DvwY+7Yd2A/DW0TNc/v2XeetYq79eIuQcPNXBgMdMuDN10NsrM2nePRL0Drj5+6EWNiwJ7VmpKnjGLRxmjNkLlIyw/afAT0fYboC7fNK6cazKzyDWJlQcOxM1owWqztVwn9zV2rI56cTH2Nh18ixXL9fBS+Gu/NgZOvvcXKUpGTWKsJ6hmhwfy/LcDMqPnQl2UwKmssFJWkIs+ZnJk3peQmwMS+aks0vz7hFhS3UziXE23jFvxvg7q6gU1sEdYF2Rgz11Z+npj468e1WDi6Vz0rFNoehSSb6dfXVOBtweP7RMBYoxhi01TVwyb4YuQ6dGFfbBvbTQQb/bRMVIkAG3h+rGkRfEnoiSAjvd/W4ONLX7uGUqkI60dFB7pltHyagxRURwFyEqUjNHT3fS0++ZdL590OBkpmj4RxjJXqz2LsyxQce3qzGEfXDPSI5j0ay0qAjuVeMsiD2eAkcyjpR4dmsRsbC2tbqZpTnp5GQkBbspKoSFfXAHb959x4k2+iM8l1xZ7yIh1sZFM1Km9HwRoTjfrp2qYexsVx/bT5wJm9rtKngiIriXFjno7nefq7kSqaoanCzJSSc2Zuo/tuJ8O0daOnD19PuwZSpQXjnYgsfAlUtmBbspKsRFRHAvK/QuUlAewZOZPB5DVb1r0jNThyspsGMM7K3VCpHhaEt1MzNS41k5xdScih4REdxnpidSNCMlovPutW1dtPcOTDnfPmhlnlaIDFcDbg8vH2jmXYtmTmkorIouERHcAUoLM6k43obHc0EByohwrszvFIdBDspIimNedoqOmAlD20+04eoZ0Hy7mpCICe5lRVk4u/s52ByZY7gr653E2oSFs1OnfaySAm+FSG+lCBUuttY0ExcjXLpAS2Sr8UVMcF9XNJh3j8zUTFWDiwWz0nyyTmZxvp3Wzj5qz3T7oGUqULZUN7H+oixSE8YtCaVU5AT3vMwkcjIS2RaBwd0YQ2W9c9qdqYPOrcykFSLDxvHTnRxp6dSFOdSERUxwFxFKCx1UHDsTcemGJlcvrZ19LPdRcF88O43EOJvm3cPI1prBWak6BFJNTMQEd4CyIgfN7b2caO0KdlN8arozU4eLjbGxMtfOLp2pGja21jSzYGYqBVmTqwaqoldEBfdIzbtX1rsQgSU+XHGnuMDO/gYXvQPRUU0znLX39LPtWKsWClOTElHBff7MVBwp8ZQfj6zgXtXgpGhGCik+7EgrybfT5/ZQ3RiZo4siyd8PnabfbbhSUzJqEiIquIsIa+dmRtyVe1WDa9rj24cbXHZPJzOFvi3VzWQkxbHa+pkpNRERFdzBm3c/eaYrYhaCbuvso/5st89GygzKyUhiVnqCdqqGOLfHWLNSs6dVU0hFn4j7bVlXlAUQMamZczNT/VBLpCQ/U4N7iNtTd5bWzj42aKEwNUkRF9yX5KSREh8TMUXEKq2RMr6+cgdvauZEaxetHb0+P7byja3VzcTYhMt1VqqapIgL7rExNtYUOiIm715Z7yTXnoQ9Od7nxy6xJjPtqdOr91D1YnUTa+dmkpEcF+ymqDAzbnAXkUQRKReRPSJSJSLfsrYXicg2ETkkIo+JSLy1/TYRaRGR3dbtn/39JoZbV+TgYFMHbZ19gX5pn9vf4JrysnrjWZGXQYxNdGWmEFV/tpuaU+1aKExNyUSu3HuBDcaYVUAxcLWIrAe+C/zYGLMAaAM+MeQ5jxljiq3b/T5v9TjKrPHuFWGed+/oHeDo6c4pL4g9nuT4WBbOStOVmUKUzkpV0zFucDdeHda3cdbNABuAx63tDwMf9EsLp2BlXgbxsbawT81UNw52pvrnyh28i3fsrj0bsaWSw9nW6ibmZiUzL3tqyyqq6DahnLuIxIjIbqAZeAE4Apw1xgxYu9QBuUOe8mER2Ssij4tI/ijHvENEtovI9paWlmm8hQslxMZQnG8P+xEzlfWDnan+W3WnON9Oe4/3E4IKHV19A7x+pJUrF89CRBfmUJM3oeBujHEbY4qBPKAMWDLSbtbXZ4FCY8xK4EW8V/UjHfM+Y8xaY8za7GzfjwRYV+SgqsFFR+/A+DuHqMp6FzNSE5iZluC31xjsVNXJTKHljcOt9A14NN+upmxSo2WMMWeBl4H1gF1EBufD5wEN1j6txpjBsXW/Btb4pqmTU1rowO0x7DwRvkGrqsHJ8tx0v165zctOJS0hVse7h5gtNU2kJsRSaq0PrNRkTWS0TLaI2K37ScBVQDXwEnC9tdutwNPWPjlDnv4Ba9+AWz03kxibhG3evaffzaHmDr+Mbx/KZhNW5ds1uIcQYwxbqpu5bOEM4mMjbrSyCpCJ/ObkAC+JyF6gAnjBGPMc8GXgCyJyGMgCHrD2/4w1ZHIP8BngNt83e3ypCbEsn5MetsH9YFM7bo/xeU2ZkRTn26k51U53n1aIDAVVDS6a23t1lIyalnHLDBpj9gIlI2w/ijf/Pnz7V4Gv+qR101RW5ODhN0/Q0+8mMW76y9MFUmW9d6SMPztTB5UU2HF7DPvqneeGkarg2VLdjAhcsUhnpaqpi+jPfKWFDvoGPOytcwa7KZNW2eAkLTGWfEeS319rcNm93brsXkjYWtNESb6dGan+60hXkS/igzsQlnVmBsv8BmIYXFZqAvmOJF2ZKQQ0t/ewp87JlVooTE1TRAf3zJR4Fs1Ko/x4eF2RDrg91DS6/N6ZOpRWiAwNL52blapDINX0RHRwBygtymTH8TMMuD3BbsqEHWnppHfA45cyv6MpzrfT6OyJmDr4AK8cbOF4mE3O2lLdzJyMRBbPTgt2U1SYi/jgXlaURWefm/3WVP5w8PbM1MBduQ+uzBQpefdTzh7+6aFyrr/3TU6GyYLpPf1uXjt8mg1LZuqsVDVtkR/cC8Nv0ezKBieJcTYuyk4N2Gsum5NOfIwtYoqI/XF7LR4DvQNubn2oPCxq1m87doauPreulap8IuKD++yMROZmJYdVcK9qcLE0J50YW+Cu3hJiY1gyJz0iOlU9HsPmilreMS+L3/xTKQ1nu7n94e109YV2KYqt1U0kxcVw8bysYDdFRYCID+7gHTVTcfxMWFQ+9HgM+xtcARnfPlxJvp19dc6w6p8Yyd8Pn6b+bDc3lRWwZq6Dn91cwr66s9z96K6QfW/GGLbUNHPJ/BlhNydDhaaoCO5lRQ7auvo53NIx/s5BdvJMFx29A34t8zuakgI73f1uDjaF/nkay+byk2Qmx/HeZd70xnuWzeY/P7icrTXNfO2pfRgTev/kDzV3UNfWrYXClM9ERXBfVxQ+efe310wN/JX74GSmXWHcqdrS3ssL+5v48Oo8EmLfvgL+x3Vz+cyG+fxhex0/euFgEFs4shermwB41yIN7so3oiK4FziSmZmWEB7Bvd5FXIywYFbgOlMHFTiScaTEh/Wye0/srGPAY7ip7MJlBD7/7oXcuDafn209zCNvnQhC60a3tbqZ5bnpzM5IDHZTVISIiuAuIpQVeRfNDsWP5ENVNThZOCvtvKvOQBERisO4QqQxhs3lJyktzGT+zAvHiYsI37luORsWz+SbT1fyfNWpILTyQmc6+9h5sk0LhSmfiorgDt7UzClXD3Vt3cFuyqiMMVQ1BHZm6nDF+XYOt3Tg6ukPWhum6s2jrRxv7eKm0oJR94mNsfHzW0pYkWfnM5t2sT0EVut65WAzHgNXab5d+VDUBPeyIu/wsm0hnJo55erhTGdfQGemDldSYMcY2FsbfsXWNpfXkp4Yy7Urc8bcLzk+lgdvXcscexKfeHg7h5raA9TCkW2pbiY7LSEg5Z1V9Iia4L5gZioZSXEhXUTs7TK/wbtyX5kXnjNV2zr7+FvlKa4ryZ3QUMKs1AR+e3sZ8bE2bn2wPGhlF/rdHl452MKGRTOxBXBeg4p8URPcbTahtNAR0p2qlfVORGBJTvCCe0ZSHPOyU8JuMtOTu+rpc3u4qWz0lMxw+Y5kHrqtFFfPALc9VI6zO/CpqIrjZ2jvGWCDpmSUj0VNcAdv3v14axfNrtAsjlXV4GJedirJ8eOuoeJXJQXeCpGh3vk8aLAjdVW+fdL/GJfnZnDvR9dwpKWD//W77fQOBHY1qq3VzcTH2Lh0/oyAvq6KfFEV3EsHx7uHQCfaSKoanEFNyQwqzrfT2tkX0p3PQ+040cah5g5uLr1w+ONEXLpgBj+4YRVvHT3DF/6wJ6AzmbfWNLN+XhYpCcH9h64iT1QF92Vz0kmOjwnJ1ExrRy+Nzp6Q6FQbnMy082R45N03ldeSEh/DP6yaM+VjbCzO5WvXLObPexv5zz/vD8inlqMtHRw93cmVWrtd+UFUBfe4GBtr5maGZHCvagh+Z+qgxbPTSIyzhcV4d2d3P3/e18AHinOnffX7yXdexO2XFPHQ68e579WjPmrh6LbqwhzKj6IquIO3BPCBpnbOdvUFuynnCWbZgeFiY2yszA2PyUzP7K6np9/DzSPMSJ0sEeHfr13C+1fm8H//WsOTO+t80MLRba1pZtGsNPIdyX59HRWdoi64lxY5MAa2h9jSe1UNLvIdSWQkxwW7KYB38Y6qelfAOxgnwxjDo+W1LM1JZ4WP5gbYbMIPP7KKiy/K4t8e38urB1t8ctzhXD39lB87o6NklN9EXXAvzrcTH2MLuU7Vqnony3KCf9U+qCTfTp/bQ3VjcCf4jGVvnZPqRhc3l+X7dOWihNgYfvXxNcyfmcqnHtlxbmUsX3r1YAsDHqP5duU34wZ3EUkUkXIR2SMiVSLyLWt7kYhsE5FDIvKYiMRb2xOs7w9bjxf69y1MTmJcDKvyM0Iq797e08/x1q6glPkdzbll90K4U3VzxUkS42xsLMn1+bHTE+N4+PYy7Mnx3PZQuc+X6tta3Yw9OY6SgkyfHlepQRO5cu8FNhhjVgHFwNUish74LvBjY8wCoA34hLX/J4A2Y8x84MfWfiGltNBBZb2Tzt7QWJln/7nO1NC5cs/JSGJWekLILrvX2TvAM7sbeP/KOaQn+ieVNSs9kYdvL2XAY/j4g9t8tlSf22N46UAz71o0M6CrbanoMm5wN16DqzfEWTcDbAAet7Y/DHzQur/R+h7r8SslxFb7LStyMOAxITMLs3IwuIfQlTtASX5myHaqPrungc4+t086Uscyf2YaD9y6lkZnD7f/psInS/Xtrm2jratfF+ZQfjWhnLuIxIjIbqAZeAE4Apw1xgz+ptcBg5+Nc4FaAOtxJ3DBopAicoeIbBeR7S0t/um0Gs2auZnYJHQmM1U1OJmZlsDMtNCq5V1cYOdEaxdnOkNrZBHApopaFsxMZXUA0hpr5jr4+S2r2Vfv5K7f76R/mkv1baluJtYmvHNBto9aqNSFJhTcjTFuY0wxkAeUAUtG2s36OtJV+gUzQowx9xlj1hpj1mZnB/aXPC0xjmVzMkKmiFhVfXDL/I5mcDJTqBUR29/gYk/tWW4qK/BpR+pY3r10Fv/1wRW8dKCFr09zqb4t1c2UFjrISAqNkVEqMk1qtIwx5izwMrAesIvI4KyRPKDBul8H5ANYj2cAoXGJPERpoYNdJ88GfahfT7+bwy0dQS3zO5qVeRnYhJBbmWlzxUniY218yA8dqWO5ZV0Bn7lywbSW6qs908WBpnZNySi/m8homWwRsVv3k4CrgGrgJeB6a7dbgaet+89Y32M9vk/14PUAABfYSURBVNWEYAWqsiIHvQMe9tUFt255zal23B4TklfuyfGxLJqdHlKdqt19bp7aVc/7ls8mMyU+4K//+asWcFPp1Jfqe+mAzkpVgTGRK/cc4CUR2QtUAC8YY54Dvgx8QUQO482pP2Dt/wCQZW3/AvAV3zd7+koLvbnaYOfdB8dQh9JImaFKCrwzVQNZTGssf9nXSHvPwJirLfmTiPBfH1zOldZSfX+rnNxSfVuqmymakcJF2YFfI1dFl4mMltlrjCkxxqw0xiw3xnzb2n7UGFNmjJlvjLnBGNNrbe+xvp9vPe7/Ih1TkJWawPyZqUEf717V4CIjKY68zKSgtmM0xfl22nsGOHq6M9hNAbwpmaIZKay/yBG0NsTG2PjZLSWszLPzmc27qJjgBUJn7wBvHmnViUsqIKJuhupQZUUOdhxvwx3Eq9LBMr8hNlr0nJJznarBT80camqn4ngbN5b6dkbqVCTHx/LgbaXk2ZP4xG8qJrRU3+uHT9Pn9mjJARUQUR3c1xU5aO8doLrRFZTX73d7qDnVHpKdqYPmZaeSlhDLrhCYqbq5opa4GOH6NXnBbgoAjpR4Hr69jIS4GG59sJxG59j177dUN5OWEEtpYfA+dajoEdXBffCPLFipmcPNHfQNeEKyM3WQzSasyg9+hcjeATdP7qzj3UtnMSM1IahtGeq8pfoerBh1qT6Px7D1QDOXLcomLiaq/+xUgET1b9kcexJ5mUlBC+6h3pk6qDjfTs2pdrr7gjds9PmqJtq6+oPWkTqW5bkZ/Opjazh6uoM7frudnv4Lz1Nlg5OW9l7Nt6uAiergDt68e8XxM0FZL7SqwUVyfAxFM1IC/tqTUVJgx+0x7PNDdcSJ2lx+krzMpJBda/SS+d6l+rYdO8MXR1iqb0t1MyJwxSIN7iowoj64ryty0NrZx5GWwI8GqWpwsiQnPeSLRwV7purx0528caSVG9fmYwvhc7WxOJevX7OEP+9r5NvPnb9U39aaZlYXZOIIwth8FZ2iPrgHK+/u8Rj2N7hYHsL59kFZqQnkO5KCVmhtc0UtMTbhhrX+LRLmC5+87CI+cWkRv3njOL+yluprcvWwr96ps1JVQEX9kutFM1KYkZpA+bFWblkXuHzu8dZOOvvcLAvhkTJDleRnTng8ty/1uz08vqOOdy2ayeyM0CqsNpqvX7OE5vZe/vuvNcxMS6B3wFto7MrFs4LcMhVNoj64iwjrihxUBHjZvcoQWhB7Iorz7Tyzp4FTzp6ABtkt1U2c7uj1e2lfX7LZhB/csJLT7b382+N7KchKJteexMJZOitVBU7Up2XA26laf7abujbfrrYzlqoGJ/ExNhbMTAvYa07HuZWZApx331Rey+z0RC5fGF7lcYcu1Xe0pZMrl8wM+sQrFV00uBOcvHtVvYuFs1OJjw2PH8GyOenEx9gCWkSs9kwXrx5q4SNr84gNw7Hhg0v1Xbsyh4+tnxvs5qgoE35/MX6waHYa6YmxAcspG2OoanCyPMTHtw+VEBvDkjnpAS3/+8fttQB8pDR8UjLDzUpP5J5bVrNgVnh8QlORQ4M7EGMTSgsdbAvQlXuDs4e2rv6w6UwdVJJvZ2+dk4FprkQ0EQNuD3/YXsdlC7LJy0z2++spFWk0uFtKixwcbemkpd03iyCP5e2ZqeHRmTqopMBOd7+bg00d4+88Ta8cbOGUqyesOlKVCiUa3C1lRd68eyBSM1UNLmwCS2aHV3AvDmCFyE3ltcxITeDKJTp8UKmp0OBuWT4ng6S4mIB0qlbVO5mXnUpSfIzfX8uXChzJOFLi/V4h8pSzh601TVy/Jk+LbCk1RfqXY4mPtbF6rj0gwb2ywRnSZX5HIyIUB6BC5B+31+IxcFMYd6QqFWwa3IcoLXRQfco1atlWX2hp76XJ1Rt2+fZBxfl2Drd04OrxzznyeAyPba/lHfOyKAzxgmpKhTIN7kOUFTkwBnae8F/aoaohPMr8jqakwI4xsLfWPxUiXzt8mrq2bm4qC73SvkqFEw3uQ5TkZxIXI34dEllllR1YGqZX7ivz/DtTdXPFSTKT43jvMu1IVWo6NLgPkRQfw4rcDMqPtfrtNaoanBQ4kslIivPba/hTRlIc87JT/JJ3b2nv5X+qmvjQ6jwSYsOrs1mpUKPBfZiyoiz21jn9tupQZb2L5bnhedU+qKQgk10nz/p8gZMndtYx4DE6tl0pHxg3uItIvoi8JCLVIlIlIp+1tq8SkTdFZJ+IPCsi6db2QhHpFpHd1u1ef78JX1pX5GDAY9jlh7SDs7ufk2e6wjbfPqg4305rZx91bWMvCD0Zxhgeq6iltDCT+WFSTE2pUDaRK/cB4IvGmCXAeuAuEVkK3A98xRizAngK+NKQ5xwxxhRbtzt93mo/WlOYiYh/iojtD7Myv6MZnMzkyyJibx09w7HTnSG5RqpS4Wjc4G6MaTTG7LTutwPVQC6wCHjV2u0F4MP+amQgpSfGsWR2ul+Ce7iPlBm0eHYaiXE2n05m2lxxkrTEWK5ZkeOzYyoVzSaVcxeRQqAE2AZUAh+wHroBGJooLRKRXSLyioi8c5Rj3SEi20Vke0tLy6Qb7k9lRQ52nmyjb8C3BbKqGlzMSk8gOy3Bp8cNtNgYGytzfTeZqa2zj79WnuK6ktywm7WrVKiacHAXkVTgCeBzxhgXcDveFM0OIA3os3ZtBAqMMSXAF4BHB/PxQxlj7jPGrDXGrM3ODq2FGNYVOejp91DZ4Nux3JX14VXmdyzFBXaqGlz0Dky/4/nJXfX0DXg0JaOUD00ouItIHN7A/ntjzJMAxpgaY8x7jDFrgE3AEWt7rzGm1bq/w9q+0B+N95e1fli8o7vPzZGWjrAr8zuaknw7fQMeqhvbp3UcYwyby0+yKt8etmP/lQpFExktI8ADQLUx5kdDts+0vtqAfwfutb7PFpEY6/5FwALgqO+b7j/ZaQlclJ1ChQ+De/UpFx4T/p2pg84tuzfNvPvOk20cau7gZq0jo5RPTeTK/RLgY8CGIcMbrwFuFpGDQA3QADxk7X8ZsFdE9gCPA3caYwK3fp2PrCtyUH78DG6Pb8ZyD85MDceCYSPJyUhiVnrCtPPum8prSYmP4R9WzfFRy5RSALHj7WCMeQ0YbWXfn4yw/xN4UzhhrazIwabyWg6cavdJuqCq3ok9OY45GYk+aF1oKMnPnNZwSFdPP8/tbeC6klxSEsb9VVRKTYLOUB3F24tm+6YUQaW1Zqo3yxUZigvsnGjt4kxn3/g7j+DpXfX09Hu4WYuEKeVzGtxHkZeZTK49iYrj0x/L3Tfg4eCpDpaFedmB4QYnM+2ZwtW7MYZN5bUszUlnRYSkqpQKJRrcx1BW5F00e7o1VA41t9Pn9oT95KXhVuZlYBOmNJlpX72T/Y0ubi7Lj6hPM0qFCg3uYygtdHC6o5djpzundZxznakRMlJmUHJ8LItmp08p776pvJbEOBsbS3L90DKllAb3Mfhq0eyqeicp8TEUZkXeykIlBXb21J7FM4lRRZ29Azyzu55rV8whPTE8Sx8rFeo0uI9hXnYKWSnx0168o7LBxdI56dhskZd+KM634+oZ4OgkPt08u6eBzj43t6zTse1K+YsG9zGICGVFjmnNVHV7DNWNrojLtw8qyR9cmWniqZlNFbUsmJnK6oJMfzVLqainwX0cpYUO6tq6aTg7tdrlx0530tXnjpiZqcPNy04lLSF2wsvuVTe62FN7lpvKCrQjVSk/0uA+junm3QfL/EbKzNThbDZhVb6dXScnduW+ufwk8TE2PqQdqUr5lQb3cSzJSSctIXbKefeqBhfxsTbmz0z1cctCR3G+nZpT7eMuTdjd5+apXfVcvXw2mSnxAWqdUtFJg/s4YmzCmsLMKefdK+udLJ6dRlxM5J7qkgI7bo9hX/3YJZL/sq8RV8+AzkhVKgAiN+L4UFmRg8PNHbR29E7qecYYqhoitzN1UPG5TtWx8+6bK05SNCOF9Rc5AtEspaKaBvcJWHcu7z65mZh1bd04u/sjtjN1UFZqAvmOpDFHzBxubqfieBs3luqMVKUCQYP7BKzItZMQa5t0aibSyvyOpSQ/c8xO1c3ltcTahA+vzgtgq5SKXhrcJyA+1kZJgZ3y45OrEFnV4CTGJiyeneanloWO4nw7jc4emlw9FzzWO+DmiZ11vHvprLBfP1apcKHBfYLKirLY3+Civad/ws+prHcyPzuVxLjIX/R5cGWmka7en69qoq2rXztSlQogDe4TtK7IgcfAjhMTz7tXNbgirszvaJbNSSc+xsauETpVN5efJC8ziUvnzwhCy5SKThrcJ6ikwE6sTSacd29u76G5vTfiR8oMSoiNYcmcdHYPu3I/0drJG0dauXFtfkTW1lEqVGlwn6Dk+FiW52ZMeKZqpJb5HUtJvp199U4G3J5z2zZX1GITuGGtFglTKpA0uE/CuiIHe2qd9PSPPRMTvGV+AZ+svxouSgrsdPW5OdjUAUC/28Mft9exYfFMZkfQ2rFKhQMN7pNQVuSgz+2ZUAXEynoXhVnJpEVRvfLiYRUit1Q3cbqjVztSlQoCDe6TsHauAxGomEDevarRybIoGN8+VIEjGUdK/LmZqpvKa5mdnsjlC7OD3DKlos+4wV1E8kXkJRGpFpEqEfmstX2ViLwpIvtE5FkRSR/ynK+KyGEROSAi7/XnGwikjOQ4Fs1Ko3ycvLuzq5/aM90RPzN1OBGh2KoQWdfWxauHWvjI2jxiI7iujlKhaiJ/dQPAF40xS4D1wF0ishS4H/iKMWYF8BTwJQDrsZuAZcDVwC9EJGIGeq8rcrDjRBv9QzoNh6tqtMr8RslImaGK8+0cbungwdeOA/CRUu1IVSoYxg3uxphGY8xO6347UA3kAouAV63dXgA+bN3fCGw2xvQaY44Bh4EyXzc8WEqLHHT1uc+NhhlJVb33sWi7cgdvp6ox8PCbx3nngmzyMpOD3SSlotKkPi+LSCFQAmwDKoEPWA/dAAxeouUCtUOeVmdtG36sO0Rku4hsb2lpmVyrg6is0CoiNkbevbLBSU5GIlmp0TfVfmWet1PV7THcUqZX7UoFy4SDu4ikAk8AnzPGuIDb8aZodgBpQN/griM83VywwZj7jDFrjTFrs7PDp8NtZnoiRTNSxly8IxrK/I4mIymOedkpzEhN4Mols4LdHKWiVuxEdhKROLyB/ffGmCcBjDE1wHusxxcC11q71/H2VTxAHtDgqwaHgrJCB3+rOoXHYy6YddnVN8CRlg6uXZETpNYF37c3LscYInqBEqVC3URGywjwAFBtjPnRkO0zra824N+Be62HngFuEpEEESkCFgDlvm54MJUWOXB293OoueOCx6ob2zEmOsr8juaS+TO4dIHWkVEqmCZyaXUJ8DFgg4jstm7XADeLyEGgBu+V+UMAxpgq4A/AfuBvwF3GmPGndIaRwcU7yo9dWAL47QWxo68zVSkVOsZNyxhjXmPkPDrAT0Z5zneA70yjXSEtLzOJnIxEth07w8cuLjzvscp6J46UeGan63R7pVTwaFJ0CkSE0kIH5cfOYMz5fcXeztR0XUpOKRVUGtynqKzIQXN7LyfPdJ3b1jfg4WBTe9SOlFFKhQ4N7lM0mHcfOiTyYFM7/W6j+XalVNBpcJ+i+TNTcaTEn7d4x7nOVL1yV0oFmQb3KRIR1s7NPG/xjsp6F6kJsRQ4dMq9Uiq4NLhPQ1mRgxOtXZxy9gDeK/elc9J1OTmlVNBpcJ+GdUVZAJQfP4PbY9jf6IrKYmFKqdCjwX0aluSkkRIfQ/mxVo62dNDT79F8u1IqJGhwn4bYGBtrCh1UHGt7e0HsKC47oJQKHRrcp2ldkYMDTe38/dBpEmJtzMtOCXaTlFJKg/t0lVnj3Z/d28DinHRdUk4pFRI0Ek3TyrwM4mNt9A14tDNVKRUyNLhPU0JsDMX53tWHtDNVKRUqNLj7wGApAi07oJQKFRNaiUmN7aayAvrdhqU5GtyVUqFBg7sP5NqT+Mr7Fge7GUopdY6mZZRSKgJpcFdKqQikwV0ppSKQBnellIpAGtyVUioCaXBXSqkIpMFdKaUikAZ3pZSKQGKMCXYbEJEW4MQ0DjEDOO2j5oQ7PRfn0/PxNj0X54uE8zHXGJM90gMhEdynS0S2G2PWBrsdoUDPxfn0fLxNz8X5Iv18aFpGKaUikAZ3pZSKQJES3O8LdgNCiJ6L8+n5eJuei/NF9PmIiJy7Ukqp80XKlbtSSqkhNLgrpVQECsngLiL5IvKSiFSLSJWIfNba7hCRF0TkkPU109ouIvJTETksIntFZPWQY33POka1tY8E631NxRTOxWIReVNEekXkX4cd62oROWCdp68E4/1Ml6/Ox2jHCTe+/P2wHo8RkV0i8lyg38t0+fhvxS4ij4tIjXW8i4PxnqbFGBNyNyAHWG3dTwMOAkuB7wFfsbZ/Bfiudf8a4K+AAOuBbdb2dwCvAzHW7U3gimC/Pz+fi5lAKfAd4F+HHCcGOAJcBMQDe4ClwX5/QTwfIx4n2O8vWOdjyPG+ADwKPBfs9xbMcwE8DPyzdT8esAf7/U32FpJX7saYRmPMTut+O1AN5AIb8Z50rK8ftO5vBH5rvN4C7CKSAxggEe8PJwGIA5oC9kZ8YLLnwhjTbIypAPqHHaoMOGyMOWqM6QM2W8cIK746H2McJ6z48PcDEckDrgXuD0DTfc5X50JE0oHLgAes/fqMMWcD8iZ8KCSD+1AiUgiUANuAWcaYRvD+IPH+5wXvD7B2yNPqgFxjzJvAS0CjdXveGFMdmJb73gTPxWhGPEe+b2XgTPN8jHacsOWD8/H/gH8DPH5qYsBM81xcBLQAD1kpqvtFJMWPzfWLkA7uIpIKPAF8zhjjGmvXEbYZEZkPLAHy8AayDSJyme9b6n+TOBejHmKEbWE7DtYH58Onxwm26b4PEXk/0GyM2eHzxgWYD36mscBq4JfGmBKgE286J6yEbHAXkTi8P6DfG2OetDY3WekWrK/N1vY6IH/I0/OABuA64C1jTIcxpgNvXn59INrvS5M8F6MZ7RyFHR+dj9GOE3Z8dD4uAT4gIsfxpuw2iMgjfmqy3/jwb6XOGDP4Se5xvME+rIRkcLdGtDwAVBtjfjTkoWeAW637twJPD9n+cWvUzHrAaX38OglcLiKx1g/9crx5uLAxhXMxmgpggYgUiUg8cJN1jLDiq/MxxnHCiq/OhzHmq8aYPGNMId7fja3GmI/6ocl+48NzcQqoFZFF1qYrgf0+bq7/BbtHd6QbcCnelMFeYLd1uwbIArYAh6yvDmt/Ae7BOxpkH7DW2h4D/ApvQN8P/CjY7y0A52I23isPF3DWup9uPXYN3hEER4CvB/u9BfN8jHacYL+/YP5+DDnmFYTnaBlf/q0UA9utY/0JyAz2+5vsTcsPKKVUBArJtIxSSqnp0eCulFIRSIO7UkpFIA3uSikVgTS4K6VUBNLgrpRSEUiDu1JKRSAN7iqiiUiKiPxZRPaISKWI3Cgia0TkFRHZISLPD5ma/kkRqbD2fUJEkq3tN1jP3SMir1rbEkXkIRHZZxWXepe1/TYReVJE/mbVD/9e8N69imY6iUlFNBH5MHC1MeaT1vcZeGsMbTTGtIjIjcB7jTG3i0iWMabV2u+/gCZjzM9EZJ91jHoRsRtjzorIF4Hlxph/EpHFwP8AC/FO3f8m3oqEvcAB4FJjTC1KBVBssBuglJ/tA34gIt8FngPagOXAC95SJMTgLQcNsNwK6nYgFXje2v468BsR+QMwWIzqUuBnAMaYGhE5gTe4A2wxxjgBRGQ/MJfzyy0r5Xca3FVEM8YcFJE1eGuM/F/gBaDKGDPSsmm/AT5ojNkjIrfhrbGCMeZOEVmHdyGL3SJSzMgllAf1DrnvRv/OVBBozl1FNBGZA3QZYx4BfgCsA7IH18QUkTgRWWbtngY0WhVE/3HIMeYZY7YZY74JnMZbOvnVwX1EZCFQgDcFo1RI0CsKFelWAN8XEQ/e5dQ+BQwAP7Xy77F4VyCqAr6Bd+WeE3jTOWnWMb4vIgvwXq1vwbv+bA1wr5WPHwBuM8b0Snitv64imHaoKqVUBNK0jFJKRSAN7kopFYE0uCulVATS4K6UUhFIg7tSSkUgDe5KKRWBNLgrpVQE+v/b1HFKbVOLOQAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"final['per_match_runs'].plot()"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### most lucky grounds for teams"
]
},
{
"cell_type": "code",
"execution_count": 43,
"metadata": {},
"outputs": [],
"source": [
"def lucky(df,team_name):\n",
" return df[df['winner']==team_name]['venue'].value_counts().nlargest(5)"
]
},
{
"cell_type": "code",
"execution_count": 44,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 44,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAF3CAYAAAC8HBCHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deZhkZX328e/NjrJLiyjLIEEQDYsOiECi4BJcQPDVKHFBXHAX1BDB5I3gEvGNSowaFQOISEBUjOCCEEUQZXGAYRMMsooiDCqLsjnD/f7xnKJrmt6Y6e6nTp37c111ddWpKvo3Rdddp55VtomIiPZZoXYBERGxbBLgEREtlQCPiGipBHhEREslwCMiWmqlufxl66+/vufNmzeXvzIiovUuuuii222PjD0+ZYBLWg04B1i1efzXbX9A0peAZwF3Ng99ne2Fk/235s2bx4IFCx5p7RERnSbpxvGOT+cM/H5gd9t/lLQycK6k7zX3HWz76zNVZERETN+UAe4y0+ePzc2Vm0tm/0REVDatTkxJK0paCNwGnGn7guauj0i6TNKRkladtSojIuJhphXgtpfY3g7YCNhR0lOBQ4GtgB2A9YD3jfdcSQdIWiBpwaJFi2ao7IiIeETDCG3fAfwI2MP2LS7uB44FdpzgOUfZnm97/sjIwzpRIyJiGU0Z4JJGJK3TXF8deC5wtaQNm2MC9gaumM1CIyJiadMZhbIhcJykFSmBf7Ltb0v6oaQRQMBC4C2zWGdERIwxnVEolwHbj3N891mpKCIipiVT6SMiWmpOp9LPhHmHfKd2CdxwxItqlxARkTPwiIi2SoBHRLRUAjwioqUS4BERLZUAj4hoqQR4RERLJcAjIloqAR4R0VIJ8IiIlkqAR0S0VAI8IqKlEuARES2VAI+IaKkEeERESyXAIyJaKgEeEdFSCfCIiJZKgEdEtFQCPCKipRLgEREtNWWAS1pN0oWSLpV0paTDm+ObSbpA0jWSvippldkvNyIieqZzBn4/sLvtbYHtgD0k7QR8DDjS9hbAH4A3zF6ZEREx1pQB7uKPzc2Vm4uB3YGvN8ePA/aelQojImJc02oDl7SipIXAbcCZwLXAHbYXNw+5GXjCBM89QNICSQsWLVo0EzVHRATTDHDbS2xvB2wE7Ag8ebyHTfDco2zPtz1/ZGRk2SuNiIilPKJRKLbvAH4E7ASsI2ml5q6NgN/MbGkRETGZ6YxCGZG0TnN9deC5wFXAWcDLmoftB3xrtoqMiIiHW2nqh7AhcJykFSmBf7Ltb0v6OXCSpA8DlwBHz2KdERExxpQBbvsyYPtxjl9HaQ+PiIgKMhMzIqKlEuARES2VAI+IaKkEeERESyXAIyJaKgEeEdFSCfCIiJZKgEdEtFQCPCKipRLgEREtlQCPiGipBHhEREslwCMiWioBHhHRUgnwiIiWSoBHRLRUAjwioqUS4BERLZUAj4hoqQR4RERLJcAjIlpqygCXtLGksyRdJelKSQc2xw+T9GtJC5vLC2e/3IiI6FlpGo9ZDLzX9sWS1gQuknRmc9+Rtj8+e+VFRMREpgxw27cAtzTX75Z0FfCE2S4sIiIm94jawCXNA7YHLmgOvUPSZZKOkbTuDNcWERGTmHaAS1oD+AZwkO27gM8BmwPbUc7QPzHB8w6QtEDSgkWLFs1AyRERAdMMcEkrU8L7BNunANi+1fYS2w8CXwR2HO+5to+yPd/2/JGRkZmqOyKi86YzCkXA0cBVtj/Zd3zDvoftA1wx8+VFRMREpjMKZRfgNcDlkhY2x94P7CtpO8DADcCbZ6XCiIgY13RGoZwLaJy7vjvz5URExHRlJmZEREslwCMiWioBHhHRUgnwiIiWSoBHRLRUAjwioqUS4BERLZUAj4hoqQR4RERLJcAjIloqAR4R0VIJ8IiIlkqAR0S0VAI8IqKlEuARES2VAI+IaKkEeERESyXAIyJaKgEeEdFSCfCIiJZKgEdEtFQCPCKipaYMcEkbSzpL0lWSrpR0YHN8PUlnSrqm+bnu7JcbERE90zkDXwy81/aTgZ2At0vaGjgE+IHtLYAfNLcjImKOTBngtm+xfXFz/W7gKuAJwEuA45qHHQfsPVtFRkTEwz2iNnBJ84DtgQuADWzfAiXkgcdO8JwDJC2QtGDRokXLV21ERDxk2gEuaQ3gG8BBtu+a7vNsH2V7vu35IyMjy1JjRESMY1oBLmllSnifYPuU5vCtkjZs7t8QuG12SoyIiPFMZxSKgKOBq2x/su+uU4H9muv7Ad+a+fIiImIiK03jMbsArwEul7SwOfZ+4AjgZElvAG4CXj47JUZExHimDHDb5wKa4O7nzGw5ERExXZmJGRHRUgnwiIiWSoBHRLRUAjwioqUS4BERLZUAj4hoqQR4RERLJcAjIloqAR4R0VIJ8IiIlkqAR0S0VAI8IqKlEuARES2VAI+IaKkEeERESyXAIyJaKgEeEdFSCfCIiJZKgEdEtFQCPCKipRLgEREtNWWASzpG0m2Srug7dpikX0ta2FxeOLtlRkTEWNM5A/8SsMc4x4+0vV1z+e7MlhUREVOZMsBtnwP8fg5qiYiIR2B52sDfIemypoll3YkeJOkASQskLVi0aNFy/LqIiOi3rAH+OWBzYDvgFuATEz3Q9lG259uePzIysoy/LiIixlqmALd9q+0lth8EvgjsOLNlRUTEVJYpwCVt2HdzH+CKiR4bERGzY6WpHiDpRODZwPqSbgY+ADxb0naAgRuAN89ijRERMY4pA9z2vuMcPnoWaomIiEcgMzEjIloqAR4R0VIJ8IiIlkqAR0S0VAI8IqKlEuARES2VAI+IaKkEeERESyXAIyJaKgEeEdFSCfCIiJZKgEdEtFQCPCKipRLgEREtlQCPiGipBHhEREslwCMiWioBHhHRUgnwiIiWSoBHRLRUAjwioqUS4BERLTVlgEs6RtJtkq7oO7aepDMlXdP8XHd2y4yIiLGmcwb+JWCPMccOAX5gewvgB83tiIiYQ1MGuO1zgN+POfwS4Ljm+nHA3jNcV0RETGFZ28A3sH0LQPPzsRM9UNIBkhZIWrBo0aJl/HURETHWrHdi2j7K9nzb80dGRmb710VEdMayBvitkjYEaH7eNnMlRUTEdCxrgJ8K7Ndc3w/41syUExER0zWdYYQnAucBW0q6WdIbgCOA50m6BnheczsiIubQSlM9wPa+E9z1nBmuJSIiHoEpAzwG17xDvlO7BG444kW1S4jorEylj4hoqQR4RERLJcAjIloqAR4R0VIJ8IiIlsoolBgKGZETXZQz8IiIlkqAR0S0VAI8IqKlEuARES2VAI+IaKkEeERESyXAIyJaKgEeEdFSCfCIiJZKgEdEtFQCPCKipbIWSsSQybow3ZEz8IiIlkqAR0S01HI1oUi6AbgbWAIstj1/JoqKiIipzUQb+G62b5+B/05ERDwCaUKJiGip5T0DN3CGJANfsH3U2AdIOgA4AGCTTTZZzl8XETF9wz4iZ3nPwHex/TTgBcDbJf312AfYPsr2fNvzR0ZGlvPXRUREz3IFuO3fND9vA74J7DgTRUVExNSWOcAlPVrSmr3rwPOBK2aqsIiImNzytIFvAHxTUu+/81+2T5+RqiIiYkrLHOC2rwO2ncFaIiLiEcgwwoiIlkqAR0S0VAI8IqKlEuARES2VAI+IaKkEeERESyXAIyJaKgEeEdFSCfCIiJZKgEdEtFQCPCKipRLgEREtlQCPiGipBHhEREslwCMiWioBHhHRUgnwiIiWSoBHRLRUAjwioqUS4BERLZUAj4hoqQR4RERLLVeAS9pD0i8k/VLSITNVVERETG2ZA1zSisBngRcAWwP7Stp6pgqLiIjJLc8Z+I7AL21fZ/sB4CTgJTNTVkRETEW2l+2J0suAPWy/sbn9GuAZtt8x5nEHAAc0N7cEfrHs5c6I9YHbK9cwKPJajMprMSqvxahBeS02tT0y9uBKy/Ef1DjHHvZpYPso4Kjl+D0zStIC2/Nr1zEI8lqMymsxKq/FqEF/LZanCeVmYOO+2xsBv1m+ciIiYrqWJ8B/BmwhaTNJqwCvBE6dmbIiImIqy9yEYnuxpHcA3wdWBI6xfeWMVTZ7BqY5ZwDktRiV12JUXotRA/1aLHMnZkRE1JWZmBERLZUAj4hoqQR4RERLLc848NaQtA0wj75/r+1TqhVUiaSXA6fbvlvSPwFPAz5s++LKpc05SesAr+XhfxfvqlVTbZLWYunX4vcVy6lC0seBY1syIGP4A1zSMcA2wJXAg81hA50LcOD/2v6apF2BvwE+DnwOeEbdsqr4LnA+cDmjfxedJOnNwAeBexmdjGfgidWKqudq4ChJKwHHAifavrNyTRMa+lEokn5uO4tsAZIusb29pI8Cl9v+r96x2rXNNUkX235a7ToGgaRrgGfaHoQp4wNB0pbA/sC+wE+AL9o+q25VD9eFNvDzskriQ34t6QvA3wLflbQq3fgbGM/xkt4kaUNJ6/UutYuq5FrgntpFDIpmpdWtmsvtwKXAeySdVLWwcXThDPyvgdOA3wL3U9Zwse1tqhZWgaRHAXtQzr6vkbQh8Je2z6hc2pyT9HbgI8Ad9DUb2O5cs4Gk7SnNBRdQ3iNAN/sDJH0S2Av4AXC07Qv77vuF7S2rFTeOLgT4L4H3MKat0/aN1YqqqDm72IClO6tuqldRHZKupaye2flmA0kXAufy8PfIcdWKqkTS64GTbD/sG4mktQetPXzoOzGBm2xnjRZA0juBDwC3snSHbue+jVA6tdNsUCy2/Z7aRQwC28dI2kbSPMaMWhu08IZuBPjVkv6L0ozS//Wwi6NQDgS2tP272oUMgCXAQkln0fFmA+CsZt3+se+RLg4jbNWotS40oRw7zmHbfv2cF1NZE1bPs724di21SdpvvOMdbTa4fpzDXe0PaNWotaEP8Bgl6WjKrkjfYekzrU9WKypigDTvkU/Y/nntWqZj6JtQmjPw8XYK6twZOHBTc1mluXRWc9Y53t9FF886XzvecdtfnutaBsBxlKHHrRi1NvQBDny77/pqwD50dOcg24cDSHq07T/Vrqey/m2yVgNeDnR1HPgOfddXA54DXAx0McCPAV5DS2bodq4JRdIKwP/Y3r12LXNN0jOBo4E1bG8iaVvgzbbfVrm0gSDpXNu71q6jNklrA8fb3qt2LXNN0g/blA1dOAMfawtgk9pFVPJvlDVQTgWwfWkz0alzJPVPo1+Bcka+ZqVyBs09lPdJF7Vq1NrQB7ikuyltnWp+/hZ4X9WiKrL9K0n9h5bUqqWyT/RdXwzcQFlioHMkncZof8AKwNbAyfUqqmp1SnA/v+/YwA4jHPoAt52zqlG/krQz4GYj6ncBV1WuqQrbu9WuYYB8vO/6YuBG2zfXKqYm2/vXruGRGNo2cElb2b56zFflh3R0Dez1gU8Bz6V8IzkDOLBLE3skvdr2VySNO/MwQyq7TdKTKEssb2D7qc1eAnvZ/nDl0sY1zGfg7wXexNJflXsMtKajYqY06368qnYdlT26+dn5b2a9Ttu+ZsaH7qIMnVurUmk1fRE4GPgCgO3LmjbxgQzwoT0Dj1GSPs04Y557Ojp9POJhJP3M9g796+RLWmh7u9q1jWdoz8AlvXSy+we1V3mWLGh+7kLpoPpqc/vlwEVVKqpE0r9Pdn+XPsymWv+8i2uhALdL2pzmhEfSy4Bb6pY0saE9A+9bA+WxwM7AD5vbuwE/sj1pwA+jZi2U59v+c3N7ZeCMLnXo9a2BMu6Hme13Vymsgr7ZqKIMrf1Dc30dyiqem1UsrwpJTwSOomTGH4DrgVfbvqFmXRMZ2jPwXm+ypG8DW9u+pbm9IfDZmrVV9HhK22/vzGqN5lhn9BarkvQ6YLe+D7PPUzp1O6MX0M2//VTb321uv4DS0d05tq8Dnivp0cAKtu+uXdNkhjbA+8zrhXfjVuBJtYqp7AjgkuZMHOBZwGH1yqmq8x9mfXaw/ZbeDdvfk/ShmgXNtYlGJfXmTAzq6KQuBPiPJH0fOJHydfGVwMBtTjrbmiUEfkHZgb63C/0htn9br6qq8mE26nZJ/wR8hfIeeTXQmaGljd6opC0pa8P0NoHZEzinSkXTMLRt4P2aDs2/am6eY/ubNeupRdJ5tp9Zu45BIelxjH6YXdDVD7OmM/MDQG9ZhXOAw7vYiSnpDOD/9JpOJK0JfM32HnUrG18nAjwKSYcDlwGnOP/jkbQuZc2P1XrHbA/s2VbMPklXA9vavr+5vSpwqe2t6lY2vqFvQpG0E/Bp4MmUNbBXBP7U0UkK76FMZFks6T46PGFD0hspW8xtBCwEdgLOo4MTvCSNAP8APIWlP8w691oAxwMXSvompTlpHwZ4Wd0VahcwBz4D7AtcQ1mo5o2UQO8c22vaXsH2KrbXam53LrwbB1LaOm9shlFuDyyqW1I1JwBXA5sBh1MW9vpZzYJqsf0R4PWUIYR3APvb/pe6VU1s6M/AAWz/UtKKtpcAx0r6ae2aakmzwUPus32fJCSt2qybs2Xtoip5jO2jJR1o+2zgbEln1y6qFtsXSfoVzXtE0ia2b6pc1ri6EOD3NCvvLZT0/yizqh49xXOGUpoNlnKzpHWA/wbOlPQHOrpTE/Dn5uctkl5EeR02qlhPNZL2oqyf9HjgNsoEp6spzUsDZ+g7MSVtShn7vQrwbmBt4LO2r61aWAWSLqc0G5xveztJW1FGG7yicmlVSXoW5e/ie72JPV0i6cXAj4GNKc2LawGH2T6tamEVSLqUckLzP7a3l7QbsK/tAyqXNq4utIHvbfs+23fZPtz2e4AX1y6qkvts3wc81GxAGffaOZKO7123fbbtUyn7IXbRH2zfafsK27vZfjqjE5y65s/N8sorSFrB9lnAQC5kBd0I8P3GOfa6uS5iQIxtNvgW3W02WOorsaQVgadXqqW28Tr1O9nRD9whaQ3KWPgTJH2KssnFQBraNnBJ+wJ/B2wm6dS+u9aie7PMALC9T3P1sGYG4trA6RVLmnOSDgXeD6wu6a7eYeAByiJGndFscr0zMDJmKvlalOG2XfQS4F5Kc+urKO+RD1ataBJDG+DATykdluuz9KYOd1Mms3SWpCdQVlkDeLBmLXPN9keBj0r6qO1Da9dT2SqUNWBWYukNLu4CXlalovoeC9zSNDUeJ2l1YAMG9KRv6DsxeyQ9hjJV+CbbXVsD+1BgZdsfbG7fRBnjugpwXBNqndB0at9h+87m9m7A3pSxz5+1/UDF8qqQtKntG5vr61Jen24EwxiSFgA79/4OmhFsP7G9Q93Kxje0beCSvi3pqc31DYErKAP0j5d0UNXi5t7LWfpbyO9sb0NpB35RnZKqOZlmGKmk7YCvATdROqr+o2Jdc07SPzd7x94oaVVJPwSuBW6V1MnlZIGV+j/Em+urVKxnUkMb4MBmtq9oru8PnGl7T8riRa+vV1Ydtv/Ud/NTzbEllNmpXbK67V7H7auBY2x/gvI3smO9sqp4BWWFSiid/SsAI5SVGQd29uEsW9SMBQdA0kuA2yvWM6lhDvD+8bzPAb4L0Kwy1ql2X2CNZvcdAGx/CR5aqKdrU+nVd3134AcAtrv2NwHwQF9Tyd8AJ9peYvsqhrt/bDJvAd4v6aZmNub7gIEcAw7D/T/pV5LeCdwMPI1mtEXTKbHyZE8cQl8HviDpHbbvAWh2HPlMc1+X/FDSyZQO7nVpttprmtm61v59f9PMeCtlq8G/77vvUXVKqquZ4LdTM5RQtu+WtAOlaWngDPMZ+BsobbyvA15h+47m+E7AsRM9aUj9X8q04JskXSTpIkqn3a3NfV1yEHAK5d+/a9/My8cB/1irqEoOpHyAXw0caft6AEkvBC6pWdgA2AQ4WNL/Ap+rXcxEOjMKJR769vEXzc1f2r63Zj0Rg6QZobRvc1kMbArMH9QNjSEBHhFBs0Lp2sBJwEm2r5F0fW/j50E1zE0oERHTtYgymWkDykgcKBs6DLQEeHSSpBc3Gz1HYPslwF8CFwOHS7oeWFfSQA8tHfomFElPonRCbGD7qZK2Afay/eHKpVXRTKPflL4RSF3c0EHSV4BnAt8Ajm2GznWSpEcB7wU2sf0mSVsAW9r+duXSqpH0WMo4+X2BjW1vXLmkcXUhwM8GDga+YHv75tgVtp9at7K5J+ljlD/KnwNLmsO2vdfEzxpektaivEH3p3xdPpYyFvruqoXNMUlfBS4CXtuc5KwOnGd7YJdRnUv9Sw0MmmEeB97zKNsXSv3zNwZ3echZtjflzOr+2oUMAtt3SfoGZTbqQZQNbA+W9O+2u7Sc6ua2X9Gs4IntezXmDdNlgxre0I028NslbU7TISHpZZRJHF10Hd2bxDQuSXs2O4//kPKa7Gj7BcC2LD2hpQseaM66e++RzYF8yLdAF87A305Z53krSb+mLKP66rolVXMPZW/QH9D3BrX9rnolVfNyyuSVpdr/bd8jqWtr5XyAMlN5Y0knALvQ3U1PWmXo28B7mqnjK3StfbOfpPF2J8L2cXNdy6Bo2sH7O3Q7uZVYs9zyTpS1Ys63PbALOM2mZuPzD1M2dTid8o3sINtfqVrYBIY2wMfsMPIwtj85V7UMkuar8ia2fzHlg4eYpAOAD1HeqL03gW0/sV5V9WR0UiFpYbPh9z6UPqN3A2fZ3rZyaeMa5iaU3g4jW1J2Yu9tq7YnZb+7zpG0J/BxyvrGmzXrYX+wo6NQDgae0tUzzX59o5OuZHSlTtPN90mvj+iFlBFJvx/k/tyhDXDbhwNIOgN4Wq/pRNJhlEX8u+gwyprXPwKwvVDSQE8VnkXXUvoEIqOT+p0m6WrKN7O3SRoB7qtc04SGNsD7bMLSy4Q+AMyrU0p1i23fOeaMYjjb0KZ2KPBTSReQDt3e6KQEeOnQ/Rhwl+0lku4BBvYbahcC/HjgwmbImCljfb9ct6RqrpD0d8CKzWy7d1E2f+6iL1CGEF5O9zb4GCujk0adZ/tpvRu2/yTpx5Q9BQbO0Ae47Y9I+h7wV82h/W13da3jd1LWvL4fOBH4PqUjr4sW2560o7tDTmW0j6iTJD0OeAKwuqTtGd25aS0GeHOLoR2F0k/SrsAWto9t2rTW6C1eH90k6SPAjcBpLH3W2alhhJJWBL5vu6ubGAMPDbF9HTAf+BmjAX4XcJztUyqVNqmhD3BJH6D8T9nS9pMkPR74mu1dKpc2ZySdxiRt3V0chdKsNjdWJ4cRSjoVeI3tO2vXUlOzOuW+tk+oXct0DX0TCqXNe3vKMpHY/o2kNSd/ytD5ePPzpZStw3qTEvalbC3WOYO+UP8cuw+4XNKZwJ96B7vWBm77QUlvBhLgA+QB25bUW+fh0bULmmu2zwaQ9CHbf91312mSujjWF4BmQ9+tgdV6x2x3sYP7O80l4ExJfw98laU/zAayaa0LAX6ypC8A60h6E/B64IuVa6plRNITbV8H0IwBH5niOUOpaVp7NiXAvwu8ADiXDo5Q6vJSCuPorYPz9r5jBgayaW3o28ABJD0PeD6lY+L7ts+sXFIVkvagLOx1XXNoHvBm29+vVlQlki6nrHNxie1tJW0A/KftPSuXNuea/oCHBUEX+wPapgtn4DSB3cnQ7mf79Gb891bNoas7PPvu3qbNc3GzoNVtDOhZ1hyY33d9NcpKjetVqqUqSSsDbwV6TY0/omwG8+dqRU1i6NcDl/RSSddIulPSXZLulnRX7brmkqR/6Lu5l+1Lm8v9kv6lWmF1LZC0DqU57SJKJ/eFdUuqw/bv+i6/tv1vwO6166rkc8DTgf9oLk9vjg2koW9CkfRLYM+O73l4cW92Wf/18W53kaR5wFq2L6tcShWS+v//r0A5I3/roK7AN5skXTr23z3esUHRhSaUW7sc3g1NcH28250g6cvAj4Ef2766dj2VfaLv+mLK0NK/rVNKdUskbW77WgBJT2R0/9iBM7QBLumlzdUFzaat/83SM+4GcmbVLPEE18e73RVfAnYFPt28SRcC59j+VNWqKrC9W+0aBsjBwFmSrqOc3GxK2fR6IA1tE4qkYye527Y7s22WpCWUMa2ibODbW0ZVwGq2O7lPZjONfAdgN+AtlI7NrSZ/1vCRtDZlFb5ex93ZlHXiOzkzU9KqlH0ExIB39A9tgPdIWm/sIHxJm2UtlG5rVt57NHAepSnlXNu31a2qDknfAK4AeuPBXwNsa/ulEz9rOElaDXgb5duZKX8bn7c9kGuCdyHAfwK8wPZdze0nU9ZCeWrdyqImSUdSRhjcD/yEsvvMebbvrVpYBb1txKY61gWSTgbuZunlJta1/fJ6VU1saNvA+/wLZcr4iyhfi74MvKpuSVGb7XcDSFqD0sZ5LGWdmFVr1lXJvZJ2tX0ugKRdKDvSdNGWY0acnCXp0mrVTGHoA9z2d5rB+WdQ9snc2/Y1lcuKyiS9g7JG/NMpy8oeQ/m63EVvBY5r2sIF/B7Yr25J1VwiaSfb5wNIegblG9pAGtomFEmfZukRFrtTppDfAN1baS2WJulgSrPJRbYX165nEDQzUuk1N3aRpKso39Rvag5tAlxF2bXJtrepVdt4hvkMfMGY2xdVqSIG1SnAzbYXS3o2sA3wZdt31C1r7kl6DGUUyq6AJZ1LGYXyu7qVVbFH7QIeiaE9A4+YjKSFlBmH8yhby51Kaf98Yc26amjWAT+H0Y67VwHP7tIuPZIeBfy5t+aJpC2BFwI3DvKckS6shbKLpDMl/a+k6yRd3wzSj257sGk62Qf4t6ZTc8PKNdWynu0P2b6+uXwYWKd2UXPsdMqHOZL+gjK89InA2yV9tGJdkxrmJpSeo4F3U5pQBnZKbMy5P0val9JZ11tCtpMTmigjLV4JnNzcfhnd2+Bh3b7BDfsBJ9p+p6RVKNlxaL3SJtaFAL/T9vdqFxEDZ3/K7MuP2L6+2dziK1M8Z6hIupvS0S/gPYz++1cA/khpF++KsQMe/hXA9gOSHqxT0tSGvg1c0hHAipROq/61UC6uVlREDBRJXwF+C/waOATYzPY9zZLDZw/qaoRdCPCzxjls211d7ziAZmOLj/LwPTE7uamDpHWBLVj6tejMfqmSVgcOpPSDHGP70ub4zsDmto+vWd9Ehj7AI4j/t3gAAAcfSURBVMbTDJX7AHAkpQ18f8r7oUvNBgBIeiMlvDairMq4E2VZgZzkDLhOBHgzjf4pLH128cF6FUVtki6y/XRJl9v+y+bYj23/Ve3a5lqzP+gOwPm2t5O0FXC47VdULi2mMPSdmJI+DzyKsmTof1J62Du5dVYs5T5JKwDXNNPqfw08tnJNtdxn+z5JSFrV9tXNOOgYcEM/DhzY2fZrgT/YPhx4JrBx5ZqivoMoH+zvoqyH8hq6u/7HzU1n3X8DZ0r6FvCbyjXFNAx9E4qkC2w/Q9L5wEuB3wFX2N6icmkRA0fSs4C1gdNtP1C7nrki6TQm2Z3K9l5zWM60DX0TCvDt5uziXyk7j5uyE3l0mKQnUbbP2pS+90HXOu6aZqTLeuvj2z67ckm1fLx2ActiaM/AJR1EWQbykt5qc81WSat1dauoGNWs8fx5xszQtd25Rc8knQAcavumKR8cA2WYz8A3Aj4FbCXpMuCnlEA/r2pVMSgW2/5c7SIGxIbAlZIupOydCgxus8FskHSy7b9tRuQ87Kx20JaR7RnaM/CeZi2D+cDOlA7MZwJ32N66amFRlaTDgNuAb7L0DN3fT/ScYdW0ez9Ml5pTJG1o+xZJm453v+0b57qm6ehCgK9NCe1dmp/rAJfb3r9qYVGVpPE2tXZXZ2L2SFof+J2HPRgmIOljtt831bFBMbQBLukoyuSdu4ELgPMpExX+ULWwiAEhaSfgCMoWah8CjgfWpwwvfq3t0yuWV4Wki20/bcyxywa1CWWY28A3oWxQew1lksbNQOd2W4mJNetczGPpUShfrlbQ3PsM8H7KsMEfAi+wfX4zE/NEyhrZnSDprcDbgCc2fWY9a5I9MeuQJMpZ+M7N5amUs43zurjmRYySdDywOWXtj94oFHdpr1RJC21v11y/yvaT++67xPb29aqbW01T67qUBc4O6bvr7kHuFxnmM3CadrwrJN0B3NlcXgzsSLfWOo6Hmw9s3dW23kb/Otf3jrmvU69LM7T4TmBfAEmPpaydtIakNQZ1iOXQBrikd1HOuncB/szoEMJjgMsrlhaD4QrgccAttQupaFtJd1E2dFi9uU5ze7WJnza8JO0JfBJ4PGWU0qaUXemfUrOuiQxtgFPaNr8OvNt2l9+kMb71gZ83Y5/7hxF2Zuyz7RVr1zCAPkxZTvd/bG8vaTeas/JBNNRt4BETydjnGI+kBbbnNzN1t7f9oKQLbe9Yu7bxDPMZeMSEEtQxgTskrQGcA5wg6TZgceWaJpQz8OgUSefa3rVvQ9+H7qL0e69VqbQYAJIeBdxHGQv/KsoQyxNs/65qYRNIgEdE50l6BnAUZWjp5cAbbP+8blVTS4BHZ0laEdiApSfyDORwsZhdkhYAh1KaTvYC3mj7b+pWNbUEeHSSpHdS5gLcyuh4aA/qlOmYXWOn0I83pX4QpRMzuupAYMtBbduMObeOpJdOdNv2KRVqmlLOwKOTJJ0FPK+32Ud0m6RjJ7nbtl8/Z8U8Agnw6BRJ72muPgXYEvgOS0/k+WSNuiKWRZpQomvWbH7e1FxWaS4RrZMz8OgUSasDa9q+bczxDYA7bd9Xp7KIR26F2gVEzLFPAbuOc/y5wJFzXEsMCEmtnMCVM/DoFEk/n2g/VElX2h7IVedidkm6FvhH2yfVruWRyBl4dI0muS/vh+7aHXiFpDMl/UXtYqYrnZjRNbdJ2tH2hf0HJe0ALKpUU1TW7Dq/j6Q9gJ9I+hl9G14M6jLDCfDomoOBkyV9CbioOTYfeC3wylpFRX2StgT+Afgx8FmW3rFoIKUNPDqn2S7r7ZQ9UgGuBD4zdmRKdIekIyhroLzX9vdq1zNdOQOPzmmCOnuiRr8llA0c7pc0AmB74JvUcgYeEZ0nScA/A++kdGaLspHDp21/sGZtk0mve0REWdxsV2AH2+vZXhd4BrCLpHfXLW1iOQOPiM6TdAllcbPbxxwfAc6wvX2dyiaXNvDoFEmnTnb/oA4Xi1m38tjwhtIOLmnlGgVNRwI8uuaZwK+AE4ELmHxiT3THA8t4X1VpQolOabZRex6wL7ANZTnZE21fWbWwqErSEuBP490FrGZ7IM/CE+DRWZJWpQT5vwIftP3pyiVFPCJpQonOaYL7RZTwngf8OzCQW2ZFTCZn4NEpko6jzMD8HnCS7SsqlxSxzBLg0SmSHmS0rbP/j1+UvQ9buS50dFMCPCKChzq4v2/7ubVrma7MxIyIAGwvAe6RtHbtWqYrnZgREaPuAy6XdCZ9wwptv6teSRNLgEdEjPpOc2mFtIFHRPRp03KyaQOPiM5TcZik24Grgf+VtEjSP9eubTIJ8IgIOAjYhbKc7GOynGxEREu0dTnZnIFHREyynCwwkAtZQQI8IgKynGxERDtlOdmIiJhTaUKJiGipBHhEREslwCMiWioBHhHRUgnwiIiW+v/wn1uAYEgd1wAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"lucky(df,'MI').plot(kind='bar')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"##### comparison between 2 teams on the basis of their wins"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {},
"outputs": [],
"source": [
"def comparison(team1,team2):\n",
" compare=df[((df['team1']==team1)|(df['team2']==team1))&((df['team1']==team2)|(df['team2']==team2))]\n",
" sns.countplot(x='season', hue='winner',data=compare)"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEGCAYAAABo25JHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAY7klEQVR4nO3de5hU9Z3n8feHpkNPkICBXoO02MxEd7zAtNIBMV4QnQjMjBiHyWjWKDFKLpiVeNkk7rPMxF2fxMsmjuJqNN5wsqhPvAQNWXURvEyi0q3INShOiPZCVDBemAhj43f/OAcsmmoo6TpdRZ3P63nq4Vx+9atvd9H1qXP7HUUEZmaWX30qXYCZmVWWg8DMLOccBGZmOecgMDPLOQeBmVnO9a10AR/VkCFDorm5udJlmJntVdrb2zdERGOxdXtdEDQ3N9PW1lbpMszM9iqSftfdOu8aMjPLOQeBmVnOOQjMzHJurztGUMz7779PR0cHmzdvrnQpZdfQ0EBTUxP19fWVLsXMalRNBEFHRwcDBgygubkZSZUup2wigo0bN9LR0cGIESMqXY6Z1aia2DW0efNmBg8eXFMhACCJwYMH1+SWjplVj8yCQFKDpGclvSBphaTvFWnTT9LdktZIekZScw9eryflVq1a/bnMrHpkuUWwBZgQEX8BtAATJR3Vpc1XgD9ExKeBHwFXZFiPmZkVkVkQRGJTOlufPrre/GAKcEc6/TPgRFX4K/DkyZN56623KlmCmVmvyvRgsaQ6oB34NHB9RDzTpckw4FWAiOiU9DYwGNjQpZ/pwHSA4cOHZ1ky8+fPz7T/rVu3UldXl+lrmPW2Vy4b2eM+hs9atsv1oy+Z0+PXaL/qrB730Rt64/dZKNODxRGxNSJagCZgjKTDuzQp9u1/p1umRcRNEdEaEa2NjUWHyijZlVdeybXXXgvAt771LSZMmADAggULOPPMM2lubmbDhg2sXbuWQw45hPPOO4/DDjuMz33uc7z33nsAjB8/nm9/+9uMGTOGgw8+mCeffBJIPuQvueQSPvOZzzBq1Ch+/OMfA7Bo0SJOOOEEvvjFLzJyZM/fYDOzcuqVs4Yi4i1gETCxy6oO4AAASX2BgcCbWdZy3HHHbf/gbmtrY9OmTbz//vs89dRTHHvssTu0femll5gxYwYrVqxg0KBB3HvvvdvXdXZ28uyzz3LNNdfwve8lx8FvueUWBg4cyOLFi1m8eDE333wzv/3tbwF49tlnufzyy1m5cmWWP56Z2UeW5VlDjZIGpdN/ApwE/KZLs3nA2en0VOCxyPgmyqNHj6a9vZ13332Xfv36MW7cONra2njyySd3CoIRI0bQ0tKy/Xlr167dvu60007bafkjjzzCnDlzaGlpYezYsWzcuJGXXnoJgDFjxvhaADOrSlkeIxgK3JEeJ+gD3BMRD0m6DGiLiHnALcCdktaQbAmcnmE9ANTX19Pc3Mxtt93G0UcfzahRo1i4cCEvv/wyhxxyyA5t+/Xrt326rq5u+66hwnV1dXV0dnYCyQVg1113HSeffPIO/SxatIj+/ftn9SOZmfVIZkEQEUuBI4osn1UwvRn4u6xq6M5xxx3H1Vdfza233srIkSO58MILGT16dI/P2T/55JO54YYbmDBhAvX19bz44osMGzasTFWbmWWjJq4s/qiOPfZY1q9fz7hx49hvv/1oaGjYabfQnjj33HM59NBDOfLIIzn88MP56le/un1rwcysWinjXfJl19raGl1vTLNq1aqdduvUklr/+Wzv59NHyyuL36ek9ohoLdY2l1sEZmb2IQeBmVnOOQjMzHLOQWBmlnMOAjOznHMQmJnlXE3cqrKrcpxmVqjUU85+//vfM3PmTBYvXky/fv1obm7mmmuuYfbs2Tz22GNIoqGhgXvuuYcRI0bQ3NxMW1sbQ4YMob29nalTp3LfffdxxBE7XYdnZpaZmgyCSogIPv/5z3P22Wdz1113AbBkyRLuvvtu1q1bx9KlS+nTpw8dHR07DTexdOlSpk6dyt133+0QMLNe511DZbJw4ULq6+v52te+tn1ZS0sL/fv3Z+jQofTpk/yqm5qa2Hfffbe3WbVqFaeeeip33nknY8aM6fW6zcwcBGWyfPlyRo8evdPyL3zhCzz44IO0tLRw0UUX8fzzz++wfsqUKcyePZtjjjmmt0o1M9uBgyBjTU1NrF69mu9///v06dOHE088kQULFmxff9JJJ/GTn/yErVu3VrBKM8szB0GZHHbYYbS3txdd169fPyZNmsRVV13FpZdeygMPPLB93ezZswH4xje+0St1mpl15SAokwkTJrBlyxZuvvnm7csWL17M448/zrp16wD44IMPWLp0KQceeOD2Nn369GHu3LmsXr2aWbNm7dSvmVnWavKsoUqMMCiJ+++/n5kzZ/KDH/yAhoYGmpubmThxIhdeeCFbtmwBkjuVnX/++Ts8t1+/fvz85z/n+OOPZ7/99mPGjBm9Xr+Z5VdNBkGl7L///txzzz07Lf/mN79ZtH3hrS8HDhzIkiVLsirNzKxb3jVkZpZzDgIzs5xzEJiZ5ZyDwMws5xwEZmY55yAwM8u5mjx99JXLRpa1v+Gzlu22jSTOPPNM7rzzTgA6OzsZOnQoY8eO5aGHHuL222+nra1t+5XEZmbVwlsEZdK/f3+WL1/Oe++9B8Cjjz7KsGHDKlyVmdnuZRYEkg6QtFDSKkkrJF1QpM14SW9LWpI+9uoxFiZNmsQvfvELAObOncsZZ5xR4YrMzHYvyy2CTuCiiDgEOAqYIenQIu2ejIiW9HFZhvVk7vTTT+euu+5i8+bNLF26lLFjx1a6JDOz3cosCCJifUQ8l06/C6wCanpfyahRo1i7di1z585l8uTJlS7HzKwkvXKMQFIzcATwTJHV4yS9IOmXkg7r5vnTJbVJanvjjTcyrLTnTjnlFC6++GLvFjKzvUbmZw1J2ge4F5gZEe90Wf0ccGBEbJI0GXgAOKhrHxFxE3ATQGtra2Rcco+cc845DBw4kJEjR7Jo0aJKl2NmtluZBoGkepIQ+GlE3Nd1fWEwRMR8Sf9L0pCI2NCT1y3ldM+sNDU1ccEFOx0XNzOrWpkFgSQBtwCrIuKH3bT5FPBaRISkMSS7qjZmVVOWNm3atNOy8ePHM378eACmTZvGtGnTercoM7MSZLlF8FngS8AySdsG2r8UGA4QETcCU4GvS+oE3gNOj4iq3vVjZlZrMguCiHgK0G7azAZ8qa2ZWQXVzJXFtbohUas/l5lVj5oIgoaGBjZu3FhzH5oRwcaNG2loaKh0KWZWw2pi0LmmpiY6Ojqo9msM9kRDQwNNTU2VLsPMalhNBEF9fT0jRoyodBlmZnulmtg1ZGZme85BYGaWcw4CM7OccxCYmeWcg8DMLOccBGZmOecgMDPLOQeBmVnOOQjMzHLOQWBmlnMOAjOznHMQmJnlnIPAzCznHARmZjnnIDAzyzkHgZlZzjkIzMxyzkFgZpZzDgIzs5xzEJiZ5ZyDwMws5xwEZmY5l1kQSDpA0kJJqyStkHRBkTaSdK2kNZKWSjoyq3rMzKy4vhn23QlcFBHPSRoAtEt6NCJWFrSZBByUPsYCN6T/mplZL8lsiyAi1kfEc+n0u8AqYFiXZlOAOZF4GhgkaWhWNZmZ2c6y3CLYTlIzcATwTJdVw4BXC+Y70mXruzx/OjAdYPjw4VmVacDoS+b0uI/2q84qQyW2zSuXjezR84fPWlamSqxWZX6wWNI+wL3AzIh4p+vqIk+JnRZE3BQRrRHR2tjYmEWZZma5lWkQSKonCYGfRsR9RZp0AAcUzDcB67KsyczMdpTlWUMCbgFWRcQPu2k2DzgrPXvoKODtiFjfTVszM8tAlscIPgt8CVgmaUm67FJgOEBE3AjMByYDa4A/Al/OsB4zMysisyCIiKcofgygsE0AM7KqwczMds9XFpuZ5ZyDwMws5xwEZmY55yAwM8s5B4GZWc45CMzMcs5BYGaWcw4CM7OccxCYmeWcg8DMLOccBGZmOecgMDPLuZKCQNKCUpaZmdneZ5ejj0pqAD4ODJG0Lx+OJvoJYP+MazMzs16wu2GovwrMJPnQb+fDIHgHuD7DuszMrJfsMggi4p+Af5L0zYi4rpdqMjOzXlTSjWki4jpJRwPNhc+JiDkZ1WVmZr2kpCCQdCfwZ8ASYGu6OAAHgZnZXq7UW1W2Aoemt5Y0M7MaUup1BMuBT2VZiJmZVUapWwRDgJWSngW2bFsYEadkUpWZmfWaUoPgH7MswszMKqfUs4Yez7oQMzOrjFLPGnqX5CwhgI8B9cC/RcQnsirMzMx6R6lbBAMK5yWdCozJpCIzM+tVezT6aEQ8AEzYVRtJt0p6XdLybtaPl/S2pCXpY9ae1GJmZj1T6q6h0wpm+5BcV7C7awpuB2az64vOnoyIvy6lBjMzy0apZw39TcF0J7AWmLKrJ0TEE5Ka96gqMzPrNaUeI/hyRq8/TtILwDrg4ohYUayRpOnAdIDhw4dnVIqZWT6VemOaJkn3p/v8X5N0r6SmHr72c8CBEfEXwHXAA901jIibIqI1IlobGxt7+LJmZlao1IPFtwHzSO5LMAx4MF22xyLinYjYlE7PB+olDelJn2Zm9tGVGgSNEXFbRHSmj9uBHn01l/QpSUqnx6S1bOxJn2Zm9tGVerB4g6Qzgbnp/Bns5kNb0lxgPMltLjuAfyC5EI2IuBGYCnxdUifwHnC6Rzc1M+t9pQbBOSSngv6I5LTRXwG7PIAcEWfsZv3stE8zM6ugUoPgvwNnR8QfACR9EriaJCDMzGwvVuoxglHbQgAgIt4EjsimJDMz602lBkEfSftum0m3CErdmjAzsypW6of5/wR+JelnJMcIvgBcnllVZmbWa0q9sniOpDaSgeYEnBYRKzOtzMzMekXJu3fSD35/+JuZ1Zg9GobazMxqh4PAzCznHARmZjnnIDAzyzkHgZlZzjkIzMxyzkFgZpZzDgIzs5xzEJiZ5ZyDwMws5xwEZmY55yAwM8s5B4GZWc45CMzMcs5BYGaWcw4CM7OccxCYmeWcg8DMLOccBGZmOecgMDPLucyCQNKtkl6XtLyb9ZJ0raQ1kpZKOjKrWszMrHtZbhHcDkzcxfpJwEHpYzpwQ4a1mJlZNzILgoh4AnhzF02mAHMi8TQwSNLQrOoxM7Pi+lbwtYcBrxbMd6TL1ndtKGk6yVYDw4cP32Hd6Evm9LiQ+wdc1eM+hs9atsv1e0ud5fDKZSN73MfeUGcpNZbnfe9xF7vV0zp7o8a9xd7ynheq5MFiFVkWxRpGxE0R0RoRrY2NjRmXZWaWL5UMgg7ggIL5JmBdhWoxM8utSgbBPOCs9Oyho4C3I2Kn3UJmZpatzI4RSJoLjAeGSOoA/gGoB4iIG4H5wGRgDfBH4MtZ1WJmZt3LLAgi4ozdrA9gRlavb2ZmpfGVxWZmOecgMDPLOQeBmVnOOQjMzHLOQWBmlnMOAjOznHMQmJnlnIPAzCznHARmZjnnIDAzyzkHgZlZzjkIzMxyzkFgZpZzDgIzs5xzEJiZ5ZyDwMws5xwEZmY55yAwM8s5B4GZWc45CMzMcs5BYGaWcw4CM7OccxCYmeWcg8DMLOccBGZmOZdpEEiaKGm1pDWSvlNk/TRJb0hakj7OzbIeMzPbWd+sOpZUB1wP/CXQASyWNC8iVnZpendEnJ9VHWZmtmtZbhGMAdZExL9GxL8DdwFTMnw9MzPbA1kGwTDg1YL5jnRZV38raamkn0k6oFhHkqZLapPU9sYbb2RRq5lZbmUZBCqyLLrMPwg0R8Qo4P8CdxTrKCJuiojWiGhtbGwsc5lmZvmWZRB0AIXf8JuAdYUNImJjRGxJZ28GRmdYj5mZFZFlECwGDpI0QtLHgNOBeYUNJA0tmD0FWJVhPWZmVkRmZw1FRKek84GHgTrg1ohYIekyoC0i5gH/WdIpQCfwJjAtq3rMzKy4zIIAICLmA/O7LJtVMP1d4LtZ1mBmZrvmK4vNzHLOQWBmlnMOAjOznHMQmJnlnIPAzCznHARmZjnnIDAzyzkHgZlZzjkIzMxyzkFgZpZzDgIzs5xzEJiZ5ZyDwMws5xwEZmY55yAwM8s5B4GZWc45CMzMcs5BYGaWcw4CM7OccxCYmeWcg8DMLOccBGZmOecgMDPLOQeBmVnOOQjMzHLOQWBmlnOZBoGkiZJWS1oj6TtF1veTdHe6/hlJzVnWY2ZmO8ssCCTVAdcDk4BDgTMkHdql2VeAP0TEp4EfAVdkVY+ZmRWX5RbBGGBNRPxrRPw7cBcwpUubKcAd6fTPgBMlKcOazMysC0VENh1LU4GJEXFuOv8lYGxEnF/QZnnapiOdfzlts6FLX9OB6ensfwRWl7ncIcCG3baqPNdZXq6zfPaGGiHfdR4YEY3FVvQt8wsVKvbNvmvqlNKGiLgJuKkcRRUjqS0iWrPqv1xcZ3m5zvLZG2oE19mdLHcNdQAHFMw3Aeu6ayOpLzAQeDPDmszMrIssg2AxcJCkEZI+BpwOzOvSZh5wdjo9FXgsstpXZWZmRWW2aygiOiWdDzwM1AG3RsQKSZcBbRExD7gFuFPSGpItgdOzqmc3MtvtVGaus7xcZ/nsDTWC6ywqs4PFZma2d/CVxWZmOecgMDPLuZoMAkkHSFooaZWkFZIuSJd/UtKjkl5K/903XS5J16ZDXSyVdGRBX1emfaxK25Ttgrcy13mFpOXp4+/LVeMe1vnnkn4taYuki7v0tcthR6qozlslvZ5e61JW5aqzu36qrMYGSc9KeiHt53vlqrGcdRb0VyfpeUkPVWudktZKWiZpiaS2shQYETX3AIYCR6bTA4AXSYa5uBL4Trr8O8AV6fRk4Jck1zUcBTyTLj8a+BeSg911wK+B8VVY518Bj5Ic/O8PtAGfqGCd/wH4DHA5cHFBP3XAy8CfAh8DXgAOrbY603XHAUcCy6vg/2d3v8+i/VRZjQL2SafrgWeAo6rtd1nQ34XA/wYeqsb3PF23FhhSzvpqcosgItZHxHPp9LvAKmAYOw5pcQdwajo9BZgTiaeBQZKGklzc1kDyodWP5D/ya1VY56HA4xHRGRH/RvIBO7FSdUbE6xGxGHi/S1elDDtSDXUSEU+Q0TUt5apzF/1UU40REZvS2fr0UbYzVMr5nktqIvlS9ZNy1ZdFnVmoySAopGRE0yNIvonsFxHrIXljSFIXkjfk1YKndQDDIuLXwEJgffp4OCJWVVudJB/8kyR9XNIQ4AR2vJivt+vsTnf1l10P6+w15aqzSz9VVWO6u2UJ8DrwaESUvcZy1AlcA/wX4IMs6tumDHUG8IikdiXD7/RYTQeBpH2Ae4GZEfHOrpoWWRaSPg0cQnJV9DBggqTjqq3OiHgEmA/8CphLsgurs4J1dttFkWVlP3+5DHX2inLVmeXPW46+I2JrRLSQ/B2NkXR4OWuEntcp6a+B1yOivdy1dXmdcrxXn42II0lGdp5Rjs+kmg0CSfUkv/CfRsR96eLX0l0ppP++ni7vbjiMzwNPR8SmdPP2lyT75qutTiLi8ohoiYi/JPnAfamCdXanlGFHqqHOzJWrzm76qaoat4mIt4BFlHG3ZRnr/CxwiqS1JLssJ0j65yqsk4jY9jf/OnA/yS7XHqnJIJAkkquWV0XEDwtWFQ5pcTbw84LlZylxFPB2upn2CnC8pL7pm3g8yb69qqoz3fQenPY5ChgFPFLBOrtTyrAj1VBnpspV5y76qaYaGyUNSqf/BDgJ+E211RkR342IpohoJvl/+VhEnFltdUrqL2nAtmngc0DPz2yLMh55rpYHcAzJLoelwJL0MRkYDCwg+ba8APhkfHhmw/UkZ7QsA1rT5XXAj0k+/FcCP6zSOhvS+lYCTwMtFa7zUyTf/t8B3kqnP5Gum0xyxsTLwH+t4jrnkhwXej9d/pVqq7O7fqqsxlHA82k/y4FZ1fqeF/Q5nvKfNVSu3+efkhwTfAFYUa6/IQ8xYWaWczW5a8jMzErnIDAzyzkHgZlZzjkIzMxyzkFgZpZzDgIzs5xzEJiZ5ZyDwCyVXrX5CyVj5y+X9PeSRkt6PB3g6+GC4QDOk7Q4bXuvpI+ny/8ufe4Lkp5IlzVIui0dQ/55SSeky6dJuk/S/1EyHv2VlfvpLc98QZlZStLfAhMj4rx0fiDJ+FJTIuINJTf8OTkizpE0OCI2pu3+B/BaRFwnaVnax/+TNCgi3pJ0EXB4RHxZ0p+TDP9xMMlQBrNIRqLcAqwGjomIVzHrRX0rXYBZFVkGXC3pCuAh4A/A4cCjyVAx1JEMOwFweBoAg4B9gIfT5f8C3C7pHmDbwGLHANcBRMRvJP2OJAgAFkTE2wCSVgIHsuNQ3WaZcxCYpSLiRUmjScaA+T7JXd9WRMS4Is1vB06NiBckTSMZn4aI+JqksSQ3OFkiqYXiw29vs6Vgeiv+m7QK8DECs5Sk/YE/RsQ/A1cDY4FGSePS9fWSDkubDwDWp6PS/qeCPv4sIp6JiFnABpJht5/Y1kbSwcBwkt1AZlXB3z7MPjQSuErSBySjjn6d5AY/16bHC/qS3MVqBfDfSO4w9TuSXUoD0j6uknQQyVbAApJRIn8D3JgeP+gEpkXElnR3k1nF+WCxmVnOedeQmVnOOQjMzHLOQWBmlnMOAjOznHMQmJnlnIPAzCznHARmZjn3/wGlZmfEVANY2gAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {
"needs_background": "light"
},
"output_type": "display_data"
}
],
"source": [
"comparison('MI','CSK')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"#### Here we can see that MI and CSK have played against each other in more than 2 matches, and MI dominates"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.7.4"
}
},
"nbformat": 4,
"nbformat_minor": 2
}