{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"___\n",
"\n",
"
\n",
"___\n",
"# Matplotlib Exercises - Solutions\n",
"\n",
"Welcome to the exercises for reviewing matplotlib! Take your time with these, Matplotlib can be tricky to understand at first. These are relatively simple plots, but they can be hard if this is your first time with matplotlib, feel free to reference the solutions as you go along.\n",
"\n",
"Also don't worry if you find the matplotlib syntax frustrating, we actually won't be using it that often throughout the course, we will switch to using seaborn and pandas built-in visualization capabilities. But, those are built-off of matplotlib, which is why it is still important to get exposure to it!\n",
"\n",
"** * NOTE: ALL THE COMMANDS FOR PLOTTING A FIGURE SHOULD ALL GO IN THE SAME CELL. SEPARATING THEM OUT INTO MULTIPLE CELLS MAY CAUSE NOTHING TO SHOW UP. * **\n",
"\n",
"# Exercises\n",
"\n",
"Follow the instructions to recreate the plots using this data:\n",
"\n",
"## Data"
]
},
{
"cell_type": "code",
"execution_count": 45,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import numpy as np\n",
"x = np.arange(0,100)\n",
"y = x*2\n",
"z = x**2"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"** Import matplotlib.pyplot as plt and set %matplotlib inline if you are using the jupyter notebook. What command do you use if you aren't using the jupyter notebook?**"
]
},
{
"cell_type": "code",
"execution_count": 46,
"metadata": {
"collapsed": true
},
"outputs": [],
"source": [
"import matplotlib.pyplot as plt\n",
"%matplotlib inline\n",
"# plt.show() for non-notebook users"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exercise 1\n",
"\n",
"** Follow along with these steps: **\n",
"* ** Create a figure object called fig using plt.figure() **\n",
"* ** Use add_axes to add an axis to the figure canvas at [0,0,1,1]. Call this new axis ax. **\n",
"* ** Plot (x,y) on that axes and set the labels and titles to match the plot below:**"
]
},
{
"cell_type": "code",
"execution_count": 47,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 47,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFaCAYAAADYTL41AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAF6tJREFUeJzt3X+MpXdd6PH3p1RU4NJd0LahW6AIegvZQlAKV665sy23\ndjBpSW5uA9dohdWYItjgjUxr9O5qTKTmuoihTRjokkLKrQUj7RATlu44UUwIKiBoa13FlrK2g9CW\nO+O967T04x/nmfXM6ZmdOT+e8/x6v5JJzzxzzplvnwx8+36e7/OcyEwkSVIznFX1ACRJ0u45cUuS\n1CBO3JIkNYgTtyRJDeLELUlSgzhxS5LUIE7cUgdFxIUR8X8jIs7wnKci4iWzHJeknTlxSx0REf8Y\nEZcBZOZDmfncLG7kEBF/HBFvG3iJN3mQasiJW9J2tq1xSdVx4pY6ICI+ArwQ+FRxiPyXi0PhZ0XE\nbwI/Bry/+NnvDXn9MyPif0fEgxHxcETcEhHfPet/D0lO3FInZOZPA18DfiIznwvcSXEoPDN/FfhT\n4B3F4fNfHPIWNwEvBS4p/nkB8L9mMXZJWzlxS90y7uHvnwPelZnfzsx/Ad4DvGV6w5K0W2dXPQBJ\n9RYR3w88C/jLvkXoZ+E5cKkSTtxSd5xplfiZfvZN4P8Br8jMh6c7JEmj8lC51B2PAJvXZQdbi3m1\n72dbFJeMfRD43aK+iYgLIuKKEscqaRtO3FJ3vAf4tYh4FPhvbK3s9wH/PSK+FRG/W2zr//kC8PfA\n5yLiceAY8IMzGLOkAVHcf6GcN4/YB3wEOA94CvhgZv5eROwFfh94EfAAcE1mfrt4zY3A24Angesz\n81hpA5QkqWHKnrjPB87PzC9FxHOAvwSuBt4KfCszfzsiFoC9mXlDRLwcuB14DbAPuAd4WZY5SEmS\nGqTUQ+WZ+Uhmfql4vA7cR29Cvhq4rXjabcCbisdXAXdk5pOZ+QBwAri0zDFKktQkMzvHHREvBl4F\nfA44LzNXoTe5A+cWT7sAeKjvZSeLbZIkiRlN3MVh8k/QO2e9ztMvPfFQuCRJu1D6ddwRcTa9Sfuj\nmXlXsXk1Is7LzNXiPPg3iu0ngQv7Xr6v2Db4nk70kqRGysyJbl40i+I+Ctybme/r23Y38DPF42uB\nu/q2v7n4QIOL6N0T+fPD3jQz/Srh69ChQ5WPoY1f7lf3bdO+3K/T+Xrqqa3fT0OpE3dEvB74SeCy\niPhiRHwhIq6k94EF/zUi7gcup3d9KZl5L70PP7gX+CPg7Tmtf1NJkmZkfR3e/nZ473un/96lHirP\nzD8DnrHNj9+wzWt+C/it0gYlSVKJlpfh4EE4cADe9rbpv7/3KtcWc3NzVQ+hldyv5XHflsP9Orq1\nNXj3u+FTn4IPfADe+MZyfk+pN2ApS0R4BF2SVBv9lX3kCOzZM/x5EUFOuDjN4pYkaUz9lb24CPPz\n5f9OP2REkqQxLC/DJZfAxgZ85SuzmbTB4pYkaSRVVHY/i1uSpF2qqrL7WdySJO2g6sruZ3FLknQG\nm5X9r/9aXWX3s7glSRpifb1X2UtL5V6XPSqLW5KkAcvLsH8/nDrVq+y6TNpgcUuSdFpdK7ufxS1J\nEvWu7H4WtySp09bWYGGh3pXdz+KWJHXW5orxuld2P4tbktQ5s/okrzJY3JKkThm8LrtJkzZY3JKk\njmhyZfezuCVJrdf0yu5ncUuSWqsJ12WPyuKWJLVSU67LHpXFLUlqlTZWdj+LW5LUGm2t7H4WtySp\n8dqyYnw3LG5JUqO1acX4bljckqRG6lJl97O4JUmNs1nZGxvdqOx+FrckqTH6K3txEebnqx7R7Fnc\nkqRGGDyX3cVJGyxuSVLNWdlbWdySpNqysp/O4pYk1U5XV4zvhsUtSaqVrl2XPSqLW5JUC1b27ljc\nkqTKWdm7Z3FLkirjivHRWdySpEocP7717mdO2rtjcUuSZsrKnozFLUmamePHe5+X7XXZ47O4JUml\nc8X49FjckqRSDVa2k/ZkLG5JUims7HJY3JKkqfO67PJY3JKkqbGyy2dxS5KmwsqeDYtbkjSRtTVY\nWIClJSt7FixuSdLYNiv71Ckre1YsbknSyDyXXR2LW5I0Es9lV8viliTtipVdDxa3JGlHVnZ9WNyS\npG2tr/cq2xXj9WFxS5KGWl7u3WPcFeP1YnFLkrbwuux6s7glSad5XXb9WdySJFeMN4jFLUkd54rx\nZrG4JamjrOxmsrglqYM2K3tjw8puGotbkjqkv7IXF2F+vuoRaVQWtyR1xOC5bCftZrK4JanlrOx2\nsbglqcWs7PaxuCWphVwx3l6lFndE3BoRqxHx5b5thyLi6xHxheLryr6f3RgRJyLivoi4osyxSVJb\neV12u0VmlvfmEf8ZWAc+kpmXFNsOAWuZeWTguRcDHwNeA+wD7gFelkMGGBHDNktSp1nZ9RcRZGZM\n8h6lFndmfhZ4bMiPhg36auCOzHwyMx8ATgCXljg8SWoNK7s7qlqc9o6I+FJEfCgizim2XQA81Pec\nk8U2SdI21tbguuvg2mvhllvg6FHYs6fqUalMVUzctwAvycxXAY8Av1PBGCSp8QbvfuaK8W6Y+ary\nzPznvm8/CCwVj08CF/b9bF+xbajDhw+ffjw3N8fc3NzUxihJdeZ12c2xsrLCysrKVN+z1MVpABHx\nYmApM/cX35+fmY8Uj98FvCYz/0dEvBy4HXgtvUPkn8HFaZK0xfIyHDwIBw7AkSMeFm+aaSxOK7W4\nI+JjwBzw/Ij4GnAIOBARrwKeAh4Afh4gM++NiDuBe4EngLc7O0tSz9oaLCzA0pIrxruu9OIug8Ut\nqUus7PaofXFLksbnddkaxnuVS1INeV22tmNxS1KNuGJcO7G4JakmvC5bu2FxS1LFrGyNwuKWpApZ\n2RqVxS1JFbCyNS6LW5JmbHDFuJO2RmFxS9KMeF22psHilqQZ8LpsTYvFLUklWl/vVbb3GNe0WNyS\nVJLlZdi/H06dsrI1PRa3JE2Zn+SlMlnckjRFm+eyrWyVxeKWpClwxbhmxeKWpAm5YlyzZHFL0pis\nbFXB4pakMVjZqorFLUkj8LpsVc3ilqRd8rps1YHFLUk7sLJVJxa3JJ2Bla26sbglaQhXjKuuLG5J\nGuCKcdWZxS1JBStbTWBxSxL/XtkbG1a26s3iltRp/ZW9uAjz81WPSDozi1tSZw2ey3bSVhNY3JI6\nx8pWk1nckjrFylbTWdySOsEV42oLi1tS63ldttrE4pbUWla22sjiltRKVrbayuKW1CquGFfbWdyS\nWuP48a13P3PSVhtZ3JIaz8pWl1jckhrt+PHe52V7Xba6wuKW1EiuGFdXWdySGmewsp201SUWt6TG\nsLIli1tSQ3hdttRjcUuqNStb2srillRbVrb0dBa3pNpZW4OFBVhasrKlQRa3pFrZrOxTp6xsaRiL\nW1IteC5b2h2LW1LlPJct7Z7FLakyVrY0OotbUiWsbGk8FrekmVpf71W2K8al8VjckmZmebl3j3FX\njEvjs7gllc7rsqXpsbgllcrrsqXpsrgllcIV41I5LG5JU+eKcak8FrekqbGypfJZ3JKmYrOyNzas\nbKlMFrekifRX9uIizM9XPSKp3SxuSWMbPJftpC2Vz+KWNDIrW6qOxS1pJFa2VC2LW9KuuGJcqodS\nizsibo2I1Yj4ct+2vRFxLCLuj4hPR8Q5fT+7MSJORMR9EXFFmWOTtHtely3VR9mHyj8M/PjAthuA\nezLzh4Bl4EaAiHg5cA1wMTAP3BIRUfL4JJ3B2hpcdx1cey3cfDMcPQp79lQ9KqnbSp24M/OzwGMD\nm68Gbise3wa8qXh8FXBHZj6ZmQ8AJ4BLyxyfpO1Z2VI97ThxR8Q7I2LvFH/nuZm5CpCZjwDnFtsv\nAB7qe97JYpukGeqv7FtusbKlutlNcZ8H/HlE3BkRV5Zw+Dqn/H6SxjR49zNXjEv1s+Oq8sz81Yj4\nNeAK4K3A+yPiTuDWzPyHMX7nakScl5mrEXE+8I1i+0ngwr7n7Su2DXX48OHTj+fm5pibmxtjKJLA\n67KlsqysrLCysjLV94zM3QVvRLyS3sR9JfDHwOuAz2Tmu3d43YuBpczcX3x/E/BoZt4UEQvA3sy8\noVicdjvwWnqHyD8DvCyHDDAihm2WNIblZTh4EA4cgCNHPCwulSkiyMyJjlzvOHFHxPXATwPfBD4E\nfDIzn4iIs4ATmfkDZ3jtx4A54PnAKnAI+CTwcXp1/SBwTWY+Xjz/RuAg8ARwfWYe2+Z9nbilCa2t\nwcICLC15XbY0K7OauH8dOJqZDw752cWZed8kAxiHE7c0GStbqsZMJu46cuKWxuPdz6RqTWPi9l7l\nUkd4XbbUDt6rXGo5V4xL7WJxSy3mddlS+1jcUgtZ2VJ7WdxSy1jZUrtZ3FJLWNlSN1jcUgsMrhh3\n0pbay+KWGszrsqXusbilhvK6bKmbLG6pYdbXe5XtPcalbrK4pQZZXob9++HUKStb6iqLW2oAP8lL\n0iaLW6q5zXPZVrYksLil2nLFuKRhLG6phlwxLmk7FrdUI1a2pJ1Y3FJNWNmSdsPilirmddmSRmFx\nSxXyumxJo7K4pQpY2ZLGZXFLM2ZlS5qExS3NiCvGJU2DxS3NgCvGJU2LxS2VyMqWNG0Wt1SSzcre\n2LCyJU2PxS1NWX9lLy7C/HzVI5LUJha3NEWD57KdtCVNm8UtTYGVLWlWLG5pQla2pFmyuKUxuWJc\nUhUsbmkMXpctqSoWtzQCK1tS1SxuaZesbEl1YHFLO3DFuKQ6sbilMzh+fOvdz5y0JVXN4paGsLIl\n1ZXFLQ04frz3edlely2pjixuqeCKcUlNYHFLPL2ynbQl1ZXFrU6zsiU1jcWtzvK6bElNZHGrc6xs\nSU1mcatTrGxJTWdxqxPW1mBhAZaWrGxJzWZxq/U2K/vUKStbUvNZ3Gotz2VLaiOLW63kuWxJbWVx\nq1WsbEltZ3GrNaxsSV1gcavx1td7le2KcUldYHGr0ZaXe/cYd8W4pK6wuNVIXpctqassbjWO12VL\n6jKLW43hinFJsrjVEK4Yl6Qei1u1ZmVL0lYWt2prs7I3NqxsSdpkcat2+it7cRHm56sekSTVh8Wt\nWhk8l+2kLUlbWdyqBStbknbH4lblrGxJ2j2LW5Vxxbgkja6y4o6IByLiryLiixHx+WLb3og4FhH3\nR8SnI+KcqsancnldtiSNJzKzml8c8VXghzPzsb5tNwHfyszfjogFYG9m3jDktVnVuDUZK1tSl0UE\nmRmTvEeV57hjyO+/GriteHwb8KaZjkilsrIlaXJVF/fjwHeAD2TmhyLisczc2/ecRzPzeUNea3E3\niCvGJalnGsVd5eK012fmwxHx/cCxiLgfGJyNnZ0bbnkZDh6Eyy7rVfaePVWPSJKarbKJOzMfLv75\nzxHxSeBSYDUizsvM1Yg4H/jGdq8/fPjw6cdzc3PMzc2VO2CNxMqWJFhZWWFlZWWq71nJofKIeBZw\nVmauR8SzgWPArwOXA49m5k0uTmuuzco+cACOHLGyJWnTNA6VVzVxXwT8Ib1D4WcDt2fmeyLiecCd\nwIXAg8A1mfn4kNc7cdfQ2hosLMDSkivGJWmYxk7ck3Lirh8rW5J21vTFaWoBr8uWpNnyXuUam9dl\nS9LsWdwamSvGJak6FrdGslnZGxt+kpckVcHi1q5Y2ZJUDxa3dmRlS1J9WNzalpUtSfVjcWuowRXj\nTtqSVA8Wt7bwumxJqjeLW6d5XbYk1Z/FLdbXe5XtPcYlqf4s7o5bXob9++HUKStbkprA4u4oK1uS\nmsni7iArW5Kay+LuECtbkprP4u4IK1uS2sHibjkrW5LaxeJuMStbktrH4m4h734mSe1lcbeMdz+T\npHazuFvCypakbrC4W8DKlqTusLgbzMqWpO6xuBvKypakbrK4G8bKlqRus7gbZLOyNzasbEnqKou7\nAfore3ER5uerHpEkqSoWd80Nnst20pakbrO4a8rKliQNY3HXkJUtSdqOxV0jrhiXJO3E4q4Jr8uW\nJO2GxV0xK1uSNAqLu0JWtiRpVBZ3BVwxLkkal8U9Y8ePb737mZO2JGkUFveMWNmSpGmwuGfg+HHY\nv9/rsiVJk7O4S+SKcUnStFncJRmsbCdtSdI0WNxTZmVLkspkcU+R12VLkspmcU+BlS1JmhWLe0JW\ntiRplizuMa2twcICLC1Z2ZKk2bG4x7BZ2adOWdmSpNmyuEfguWxJUtUs7l3yXLYkqQ4s7h1Y2ZKk\nOrG4z8DKliTVjcU9xPp6r7JdMS5JqhuLe8Dycu8e464YlyTVkcVd8LpsSVITWNx4XbYkqTk6Xdyu\nGJckNU1ni9sV45KkJupccVvZkqQm61Rxb1b2xoaVLUlqpk4Ud39lLy7C/HzVI5IkaTytL+7Bc9lO\n2pKkJmttcVvZkqQ2amVxW9mSpLZqVXG7YlyS1Ha1LO6IuDIi/jYi/i4iFnbzGq/LliR1Qe0m7og4\nC3g/8OPAK4C3RMR/3O75a2tw3XVw7bVw881w9Cjs2TOr0bbPyspK1UNoJfdredy35XC/1lftJm7g\nUuBEZj6YmU8AdwBXD3uilT19/o+1HO7X8rhvy+F+ra86nuO+AHio7/uv05vMt7juOs9lS5K6p44T\n965sVraHxSVJXRKZWfUYtoiI1wGHM/PK4vsbgMzMm/qeU69BS5K0S5kZk7y+jhP3M4D7gcuBh4HP\nA2/JzPsqHZgkSTVQu0PlmfmdiHgHcIze4rlbnbQlSeqpXXFLkqTt1fFysDMa5+YserqI2BcRyxHx\nNxHxlYj4xWL73og4FhH3R8SnI+KcqsfaRBFxVkR8ISLuLr53v05BRJwTER+PiPuKv93Xum8nFxHv\nioi/jogvR8TtEfFM9+t4IuLWiFiNiC/3bdt2X0bEjRFxovibvmI3v6NRE/eoN2fRGT0J/FJmvgL4\nT8AvFPvyBuCezPwhYBm4scIxNtn1wL1937tfp+N9wB9l5sXAK4G/xX07kYh4AfBO4NWZeQm9U6hv\nwf06rg/Tm6P6Dd2XEfFy4BrgYmAeuCUidly41qiJmxFuzqIzy8xHMvNLxeN14D5gH739eVvxtNuA\nN1UzwuaKiH3AG4EP9W12v04oIp4L/FhmfhggM5/MzG/jvp2GZwDPjoizge8FTuJ+HUtmfhZ4bGDz\ndvvyKuCO4m/5AeAEQ+5bMqhpE/ewm7NcUNFYWiMiXgy8CvgccF5mrkJvcgfOrW5kjfVe4JeB/gUk\n7tfJXQR8MyI+XJyGWIyIZ+G+nUhm/hPwO8DX6E3Y387Me3C/TtO52+zLwTntJLuY05o2cWvKIuI5\nwCeA64vyHlyt6OrFEUTETwCrxdGMMx3ycr+O7mzg1cDNmflq4F/oHYL0b3YCEbGHXhG+CHgBvfL+\nSdyvZZpoXzZt4j4JvLDv+33FNo2hOCz2CeCjmXlXsXk1Is4rfn4+8I2qxtdQrweuioivAv8HuCwi\nPgo84n6d2NeBhzLzL4rv/4DeRO7f7GTeAHw1Mx/NzO8Afwj8KO7XadpuX54ELux73q7mtKZN3H8O\nvDQiXhQRzwTeDNxd8Zia7Chwb2a+r2/b3cDPFI+vBe4afJG2l5m/kpkvzMyX0Pv7XM7MnwKWcL9O\npDjU+FBE/GCx6XLgb/BvdlJfA14XEd9TLIy6nN7CSvfr+IKtR9y225d3A28uVvFfBLyU3k3Hzvzm\nTbuOOyKupLeydPPmLO+peEiNFBGvB/4E+Aq9wzYJ/Aq9P5o76f1X4IPANZn5eFXjbLKI+C/A/8zM\nqyLiebhfJxYRr6S36O+7gK8Cb6W3sMp9O4GIOETvPzSfAL4I/CzwH3C/jiwiPgbMAc8HVoFDwCeB\njzNkX0bEjcBBevv++sw8tuPvaNrELUlSlzXtULkkSZ3mxC1JUoM4cUuS1CBO3JIkNYgTtyRJDeLE\nLUlSgzhxS5LUIE7ckiQ1iBO3JAAi4kci4q+K2y8+OyL+uvi8YEk14p3TJJ0WEb9B7/OYv5feB3rc\nVPGQJA1w4pZ0WkR8F70P8/n/wI+m/wch1Y6HyiX1+z7gOfQ+YOJ7Kh6LpCEsbkmnRcRd9D5H/CLg\nBZn5zoqHJGnA2VUPQFI9RMRPARuZeUdEnAX8WUTMZeZKxUOT1MfiliSpQTzHLUlSgzhxS5LUIE7c\nkiQ1iBO3JEkN4sQtSVKDOHFLktQgTtySJDWIE7ckSQ3yb9M5KmTbHOCcAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"ax = fig.add_axes([0,0,1,1])\n",
"ax.plot(x,y)\n",
"ax.set_xlabel('x')\n",
"ax.set_ylabel('y')\n",
"ax.set_title('title')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exercise 2\n",
"** Create a figure object and put two axes on it, ax1 and ax2. Located at [0,0,1,1] and [0.2,0.5,.2,.2] respectively.**"
]
},
{
"cell_type": "code",
"execution_count": 48,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAFBCAYAAADQRW4vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGVRJREFUeJzt3WtslOeZxvHrDjiLlqSEg4KCCVHWBgwBGyrMIUJZk6bl\n0C1UIaslaItAVCQhbsqnBqRUGKUqm6jSNg3bLSiREUjGkZoosA02VMCoZYUDKJw24HJoyrGlAcoh\nVClg7v3giTs+zuvxPB7P5P+TRprX88wzt584vnhPt83dBQAAwrgn0wUAAJDLCFoAAAIiaAEACIig\nBQAgIIIWAICACFoAAAJKGrRm9raZXTSzwx2M+ZmZnTCzg2Y2Lr0lAgCQvaLs0VZKmt7ei2Y2U1KB\nuw+X9JykX6SpNgAAsl7SoHX33ZL+0sGQOZI2xMd+KKmfmQ1OT3kAAGS3dJyjzZd0NmH7fPxrAAB8\n6XExFAAAAfVOwxznJT2csD00/rVWzIzGygCArOTulsr7ou7RWvzRli2SFkiSmU2WdNXdL7Y3kbvz\nCPBYuXJlxmvIxQfryrpm24O1DfPoiqR7tGZWJalM0kAzOyNppaR7GzPT17n7VjObZWYnJd2UtKhL\nFQEAkEOSBq27z48wpjw95QAAkFu4GCpHlJWVZbqEnMS6hsG6hsPa9jzW1WPPnfowM+/OzwMAIB3M\nTB74YigAAJACghYAgIAIWgAAAiJoAQAIiKAFACAgghYAgIAIWgAAAiJoAQAIiKAFACAgghYAgIAI\nWgAAAiJoAQAIiKAFACAgghYAgIAIWgAAAiJoAQAIiKAFACAgghYAgIAIWgAAAiJoAQAIiKAFACAg\nghYAgIAIWgAAAiJoAQAIiKAFACAgghYAgIAIWgAAAiJoAQAIiKAFACAgghYAgIAIWgAAAiJoAQAI\niKAFACAgghYAgIAIWgAAAiJoAQAIiKAFACAgghYAgIAIWgAAAiJoAQAIiKAFACAgghYAgIAIWgAA\nAiJoAQAIiKAFACAgghYAgIAIWgAAAooUtGY2w8zqzey4mb3cxutfMbMtZnbQzI6Y2cK0VwoAQBYy\nd+94gNk9ko5L+pqkC5L2SZrn7vUJY1ZI+oq7rzCzQZJ+J2mwu99pMZcn+zwAAHoaM5O7WyrvjbJH\nO1HSCXc/7e63JVVLmtNijEu6P/78fkmXW4YsAABfRlGCNl/S2YTtc/GvJVojabSZXZB0SNL301Me\nAADZrXea5pku6YC7P2lmBZJ+bWbF7v5Zy4EVFRVNz8vKylRWVpamEgAASI9YLKZYLJaWuaKco50s\nqcLdZ8S3l0tyd38tYcyvJK129/+Nb++Q9LK7728xF+doAQBZJ/Q52n2SCs3sETO7V9I8SVtajDkt\n6al4MYMljZD0+1QKAgAglyQ9dOzuDWZWLmm7GoP5bXc/ZmbPNb7s6yT9SNJ6Mzscf9sP3P1KsKoB\nAMgSSQ8dp/XDOHQMAMhCoQ8dAwCAFBG0AAAERNACABAQQQsAQEAELQAAARG0AAAERNACABAQQQsA\nQEAELQAAARG0AAAERNACABAQQQsAQEAELQAAARG0AAAERNACABAQQQsAQEAELQAAARG0AAAERNAC\nABAQQQsAQEAEbQYtXrxYgwcPVnFxcbtjXnrpJQ0fPlzjxo3TwYMHu7E6AEA6ELQZtGjRIm3btq3d\n12tqanTq1CmdOHFCa9eu1fPPP9+N1QEA0oGgzaCpU6eqf//+7b6+efNmLViwQJI0adIkXbt2TRcv\nXuyu8gAAaUDQ9mDnz5/Xww8/3LSdn5+v8+fPZ7AiAEBn9c50AUgPM8t0CTnL3TNdAoAsxh5tD5af\nn6+zZ882bZ87d075+fntjnf3Lj1WrlyZM3Okax4A6CqCNsM6+oU+e/ZsbdiwQZJUV1enBx54QIMH\nD+7O8gAAXcSh4wyaP3++YrGYLl++rGHDhmnVqlW6deuWzExLlizRrFmztHXrVhUWFqpv376qrKzM\ndMkAgE4iaDOoqqoq6Zg1a9Z0QyWNysrKcmaOdM4DAF1h3Xkeysyc815hmBnnFANgXQFITb8LUrrq\nlHO0AAAERNBmUG1trYqKijRixAi99tprrV6/fv26Zs+erXHjxmns2LFav3599xcJAOgSDh1nyN27\ndzVixAjt2LFDQ4YMUWlpqaqrq1VUVNQ0ZvXq1bp+/bpWr16tS5cuaeTIkbp48aJ69259ap1DnGGw\nrgAkDh1npb1792r48OF65JFHlJeXp3nz5mnz5s3NxpiZbty4IUm6ceOGBg4c2GbIAgB6LoI2Q1q2\nVxw6dGir9orl5eU6evSohgwZopKSEr3xxhvdXSYAoIsI2h5s27ZtGj9+vC5cuKADBw7oxRdf1Gef\nfZbpsgAAncBxyAzJz8/XmTNnmrbbaq9YWVmpFStWSJIKCgr06KOPqr6+XhMmTGhzzoqKiqbnZWVl\n3EeaglgsplgslukyAOQQLobKkIaGBo0cOVI7duzQQw89pIkTJ2rTpk0aNWpU05gXX3xRDz74oFau\nXKmLFy9qwoQJOnTokAYMGNBqPi7aCYN1BSB17WIo9mgzpFevXlqzZo2+8Y1v6O7du1q8eLFGjRql\ntWvXNrVgfOWVV7Rw4UIVFxdLkl5//fU2QxYA0HOxR5sj2PMKg3UFIHF7DwAAPRZBCwBAQAQtAAAB\nEbQZlKzXsdR4u8n48eM1ZswYTZs2rZsrBAB0FRdDZUiUXsfXrl3T448/ru3btys/P1+XLl3SoEGD\n2pyPi3bCYF0BSFwMlZWi9DquqqrS3LlzmxpZtBeyAICei6DNkCi9jo8fP64rV65o2rRpKi0t1caN\nG7u7TABAF9Gwoge7c+eOPvroI+3cuVM3b97UlClTNGXKFBUWFrY5nhaMXUcLRgDpFilozWyGpJ+q\ncQ/4bXdvdeWOmZVJ+k9JeZI+dXeu3OlAlF7HQ4cO1aBBg9SnTx/16dNHTzzxhA4dOhQpaJGalv9A\nWbVqVeaKAZATkh46NrN7JK2RNF3SY5KeNbOiFmP6SfovSf/i7mMk/WuAWnNKaWmpTp48qdOnT+vW\nrVuqrq7W7Nmzm42ZM2eOdu/erYaGBv31r3/Vhx9+2KwXMgCg54uyRztR0gl3Py1JZlYtaY6k+oQx\n8yW96+7nJcndL6W70FwTpddxUVGRpk+fruLiYvXq1UtLlizR6NGjM106AKATkt7eY2ZzJU139yXx\n7X+XNNHdX0oY88Uh48ck3SfpZ+7e6sodbu8Jh9tQwmBdAUg946/39Jb0VUlPSuoraY+Z7XH3k2ma\nHwCArBQlaM9LGpawPTT+tUTnJF1y988lfW5mv5FUIqlV0HJlLACgp0vnHQhRDh33kvQ7SV+T9EdJ\neyU96+7HEsYUSXpT0gxJ/yDpQ0n/5u5HW8zFoeMEtbW1WrZsWdM52pdffrnNcfv27dPjjz+ud955\nR08//XSbYzjEGQbrCkAKfOjY3RvMrFzSdv399p5jZvZc48u+zt3rzWybpMOSGiStaxmyaO7u3bsq\nLy9v1oJxzpw5zVowfjFu+fLlmj59eoYqBQB0RaRztO5eK2lki6+tbbH9E0k/SV9puS2xBaOkphaM\nLYP2zTff1DPPPKN9+/ZlokwAQBfRgjFDorRgvHDhgt5//3298MILHL4EgCxF0PZgy5Yta/bn8whb\nAMg+9DrOkCgtGPfv36958+bJ3XXp0iXV1NQoLy+vVQepL3BFd9fR6xhAuvH3aDOkoaFBI0eO1I4d\nO/TQQw9p4sSJ2rRpU7stFhctWqRvfetbXHXczVhXAFLPaFiBTorSgjGRWUr/fQEAGcYebY5gzysM\n1hWA1LU9Wi6GAgAgIIIWAICACFoAAAIiaDOotrZWRUVFGjFiRLP7Zb9QVVWlkpISlZSUaOrUqTpy\n5EgGqgQAdAUXQ2XI3bt3NWLEiGa9jqurq5u1YKyrq9OoUaPUr18/1dbWqqKiQnV1dW3Ox0U7YbCu\nACQuhspKib2O8/LymnodJ5o8ebL69evX9Lxli0YAQM9H0GZIlF7Hid566y3NnDmzO0oDAKQRDSuy\nwK5du1RZWandu3d3OI4WjF1HC0YA6UbQZkiUXseSdPjwYS1ZskS1tbXq379/h3MmBi1S0/IfKKtW\nrcpcMQByAoeOM6S0tFQnT57U6dOndevWLVVXV7f6YwFnzpzR3LlztXHjRhUUFGSoUgBAV7BHmyFR\neh2/+uqrunLlipYuXSp3V15envbu3Zvp0gEAncDtPTmC21DCYF0BSNzeAwBAj0XQAgAQEEGbQcla\nMErSSy+9pOHDh2vcuHE6ePBgN1cIAOgqgjZD7t69q/Lycm3btk0ff/yxNm3apPr6+mZjampqdOrU\nKZ04cUJr167V888/H7SmdNw/2lPmSOc8ANAVBG2GRGnBuHnzZi1YsECSNGnSJF27dk0XL14MVlNP\nCUmCFkAuIWgzJEoLxpZj8vPz6XcMAFmGoAUAICAaVmRIlBaM+fn5Onv2bIdjEpmldItXM+loOdhT\n5kjnPACQKvZoMyRKC8bZs2drw4YNkhr/Nu0DDzygwYMHtzmfu/MI9ACArmCPNkOitGCcNWuWtm7d\nqsLCQvXt21eVlZWZLhsA0Em0YAQAIAlaMH5JpKvBRbJ5qqqqVFJSopKSEk2dOlVHjhxJqRZJ2rdv\nn/Ly8vTee++lNEcsFtP48eM1ZswYTZs2rdNzXL9+XbNnz9a4ceM0duxYrV+/vtWYxYsXa/DgwSou\nLm73+6BxCICUdfO5LkdqGhoavKCgwP/whz/4rVu3vKSkxI8dO9ZszNatW33WrFnu7l5XV+eTJk1K\naZ49e/b41atX3d29pqam1TxR5vhi3JNPPunf/OY3/d133+30HFevXvXRo0f7uXPn3N39008/7fQc\nP/7xj3358uVN7x8wYIDfvn272Zjf/va3fuDAAR87dmyr78E92roCyG3x/Eop+9ijzRLpanARZZ7J\nkyerX79+Tc9b3rsbZQ5JevPNN/XMM8/owQcfTOn7qaqq0ty5c5uutB40aFCn5zAz3bhxQ5J048YN\nDRw4UL17N780YerUqerfv3+rGr/Q3Y1DAOQWgjZLpKvBRZR5Er311luaOXNmp+e4cOGC3n//fb3w\nwgttXrkbZY7jx4/rypUrmjZtmkpLS7Vx48ZOz1FeXq6jR49qyJAhKikp0RtvvNHu99oeGocA6Aqu\nOka7du3apcrKSu3evbvT7122bFmzc6ZthW0yd+7c0UcffaSdO3fq5s2bmjJliqZMmaLCwsLIc2zb\ntk3jx4/Xzp07derUKX3961/X4cOHdd9993W6HgBIBUGbJdLV4CLKPJJ0+PBhLVmyRLW1ta0Oq0aZ\nY//+/Zo3b57cXZcuXVJNTY3y8vKa7hWOMsfQoUM1aNAg9enTR3369NETTzyhQ4cONQVtlDkqKyu1\nYsUKSVJBQYEeffRR1dfXa8KECa2+5/Z0tnEIADST6sndVB7iYqiU3blzp+nCn7/97W9eUlLiR48e\nbTbmgw8+aLpoZ8+ePW1etBNlntOnT3thYaHv2bMn5VoSLVy4sNXFUFHmOHbsmD/11FN+584dv3nz\npo8ZM8Y//vjjTs2xdOlSr6iocHf3P/3pTz506FC/fPlyqxo/+eQTHzNmTJv1R1lXALlNXbgYij3a\nLJGuBhdR5nn11Vd15coVLV26VO6uvLw87d27t1NzJGqrNWSUOYqKijR9+nQVFxerV69eWrJkiUaP\nHt2pOV555RUtXLiw6dad119/XQMGDGhWy/z58xWLxXT58mUNGzZMq1at0q1bt2gcAiAtaFgBAEAS\nNKwAAKCHImgBAAiIoAUAICCCFgCAgAhaAAACImgBAAiIoAUAICCCFgCAgAhaAAACImgBAAiIoAUA\nIKBIQWtmM8ys3syOm9nLHYwrNbPbZvZ0+koEACB7JQ1aM7tH0hpJ0yU9JulZMytqZ9x/SNqW7iIB\nAMhWUfZoJ0o64e6n3f22pGpJc9oY9z1Jv5T05zTWBwBAVosStPmSziZsn4t/rYmZDZH0bXf/b0kp\n/RkhAAByUbouhvqppMRzt4QtAACSekcYc17SsITtofGvJZogqdrMTNIgSTPN7La7b2k5WUVFRdPz\nsrIylZWVdbJkAADCisViisViaZnL3L3jAWa9JP1O0tck/VHSXknPuvuxdsZXSvofd3+vjdc82ecB\nANDTmJncPaWjtUn3aN29wczKJW1X46Hmt939mJk91/iyr2v5llQKAQAgFyXdo03rh7FHCwDIQl3Z\no6UzFAAAARG0AAAERNACABAQQQsAQEAELQAAARG0AAAERNACABAQQQsAQEAELQAAARG0AAAERNAC\nABAQQQsAQEAELQAAARG0AAAERNACABAQQQsAQEAELQAAARG0AAAERNACABAQQQsAQEAELQAAARG0\nAAAERNACABAQQQsAQEAELQAAARG0AAAERNACABAQQQsAQEAELQAAARG0AAAERNACABAQQQsAQEAE\nLQAAARG0AAAERNACABAQQQsAQEAELQAAARG0AAAERNACABAQQQsAQEAELQAAARG0AAAERNACABAQ\nQQsAQEAELQAAARG0AAAERNACABAQQQsAQEAELQAAAUUKWjObYWb1ZnbczF5u4/X5ZnYo/thtZmPT\nXyoAANnH3L3jAWb3SDou6WuSLkjaJ2meu9cnjJks6Zi7XzOzGZIq3H1yG3N5ss8DAKCnMTO5u6Xy\n3ih7tBMlnXD30+5+W1K1pDmJA9y9zt2vxTfrJOWnUgwAALkmStDmSzqbsH1OHQfpdyXVdKUoAABy\nRe90TmZm0yQtkjS1vTEVFRVNz8vKylRWVpbOEgAA6LJYLKZYLJaWuaKco52sxnOuM+LbyyW5u7/W\nYlyxpHclzXD3U+3MxTlaAEDWCX2Odp+kQjN7xMzulTRP0pYWBQxTY8h+p72QBQDgyyjpoWN3bzCz\ncknb1RjMb7v7MTN7rvFlXyfph5IGSPq5mZmk2+4+MWThAABkg6SHjtP6YRw6BgBkodCHjgEAQIoI\nWgAAAiJoAQAIiKAFACAgghYAgIAIWgAAAiJoAQAIiKAFACAgghYAgIAIWgAAAiJoAQAIiKAFACAg\nghYAgIAIWgAAAiJoAQAIiKAFACAgghYAgIAIWgAAAiJoAQAIiKAFACAgghYAgIAIWgAAAiJoAQAI\niKAFACAgghYAgIAIWgAAAiJoAQAIiKAFACAgghYAgIAIWgAAAiJoAQAIiKAFACAgghYAgIAIWgAA\nAiJoAQAIiKAFACAgghYAgIAIWgAAAiJoAQAIiKAFACAgghYAgIAIWgAAAiJoAQAIiKAFACAgghYA\ngIAIWgAAAiJoAQAIiKAFACCgSEFrZjPMrN7MjpvZy+2M+ZmZnTCzg2Y2Lr1lAgCQnZIGrZndI2mN\npOmSHpP0rJkVtRgzU1KBuw+X9JykXwSoFR2IxWKZLiEnsa5hsK7hsLY9T5Q92omSTrj7aXe/Lala\n0pwWY+ZI2iBJ7v6hpH5mNjitlaJD/M8VBusaBusaDmvb80QJ2nxJZxO2z8W/1tGY822MAQDgS4eL\noQAACMjcveMBZpMlVbj7jPj2cknu7q8ljPmFpF3u/k58u17SP7v7xRZzdfxhAAD0UO5uqbyvd4Qx\n+yQVmtkjkv4oaZ6kZ1uM2SLpRUnvxIP5asuQ7UqRAABkq6RB6+4NZlYuabsaDzW/7e7HzOy5xpd9\nnbtvNbNZZnZS0k1Ji8KWDQBAdkh66BgAAKQuyMVQNLgII9m6mtl8MzsUf+w2s7GZqDMbRfmZjY8r\nNbPbZvZ0d9aXrSL+LigzswNm9n9mtqu7a8xGEX4XfMXMtsR/vx4xs4UZKDPrmNnbZnbRzA53MKbz\n2eXuaX2oMbxPSnpEUp6kg5KKWoyZKemD+PNJkurSXUeuPSKu62RJ/eLPZ7Cu6VvbhHE7JP1K0tOZ\nrrunPyL+zPaT9LGk/Pj2oEzX3dMfEdd1haTVX6yppMuSeme69p7+kDRV0jhJh9t5PaXsCrFHS4OL\nMJKuq7vXufu1+GaduJc5qig/s5L0PUm/lPTn7iwui0VZ1/mS3nX385Lk7pe6ucZsFGVdXdL98ef3\nS7rs7ne6scas5O67Jf2lgyEpZVeIoKXBRRhR1jXRdyXVBK0odyRdWzMbIunb7v7fkrh6PpooP7Mj\nJA0ws11mts/MvtNt1WWvKOu6RtJoM7sg6ZCk73dTbbkupeyKcnsPsoyZTVPjld9TM11LDvmppMRz\nYYRtevSW9FVJT0rqK2mPme1x95OZLSvrTZd0wN2fNLMCSb82s2J3/yzThX0ZhQja85KGJWwPjX+t\n5ZiHk4xBc1HWVWZWLGmdpBnu3tEhEPxdlLWdIKnazEyN57xmmtltd9/STTVmoyjrek7SJXf/XNLn\nZvYbSSVqPAeJtkVZ10WSVkuSu58ys08kFUna3y0V5q6UsivEoeOmBhdmdq8aG1y0/GW0RdICqanz\nVJsNLtBM0nU1s2GS3pX0HXc/lYEas1XStXX3f4o/HlXjedqlhGxSUX4XbJY01cx6mdk/qvECk2Pd\nXGe2ibKupyU9JUnxc4gjJP2+W6vMXqb2j1illF1p36N1GlwEEWVdJf1Q0gBJP4/ved1294mZqzo7\nRFzbZm/p9iKzUMTfBfVmtk3SYUkNkta5+9EMlt3jRfx5/ZGk9Qm3qfzA3a9kqOSsYWZVksokDTSz\nM5JWSrpXXcwuGlYAABAQf70HAICACFoAAAIiaAEACIigBQAgIIIWAICACFoAAAIiaAEACIigBQAg\noP8HJ6vBZ8lJosUAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"\n",
"ax1 = fig.add_axes([0,0,1,1])\n",
"ax2 = fig.add_axes([0.2,0.5,.2,.2])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"** Now plot (x,y) on both axes. And call your figure object to show it.**"
]
},
{
"cell_type": "code",
"execution_count": 49,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAe4AAAFQCAYAAAB5151TAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X9wVfX95/HXG5H5quyitiVgCFCU3waRFepWdzZEiOAO\nUKeUgo5SoO1+Rf0y1fk22tktsO3wo51i8deMrICsozL44yvwbfmhiZkd8QdtEfUrkeoqCFGCSOSb\nqDQi7/3j3qQ3MSH3JvfmnHPP8zGT8d6Te04+fCby5nXO54e5uwAAQDT0CLoBAAAgfRRuAAAihMIN\nAECEULgBAIgQCjcAABFC4QYAIEJyWrjNbICZVZrZW2b2ppn9U/L4BWa208z2m9kOM+uTcs7dZvaO\nmVWbWVku2wcAQNRYLudxm1k/Sf3cfa+Z9Zb0F0kzJM2T9Im7/8bMyiVd4O53mdkoSY9JGi9pgKTn\nJQ11JpsDACApx4nb3Y+4+97k6wZJ1UoU5BmSNiQ/tkHS95Kvp0va6O6n3P2ApHckTchlGwEAiJJu\ne8ZtZoMljZX0iqQCd6+VEsVdUt/kxwolHUo5rSZ5DAAAqJsKd/I2+VOSFiWTd+tb39wKBwAgDT1z\n/QPMrKcSRftRd9+cPFxrZgXuXpt8Dn40ebxGUlHK6QOSx1pfk0IPAIgkd7eunN8diXudpH3uvjrl\n2BZJP0q+nitpc8rx2WbWy8y+LekSSbvbuqi785WDr8WLFwfehnz8ol/p26h90a/Z+Tp9uuX7bMj1\ndLCrJN0oqdTMXjOzPWY2RdJKSZPNbL+kayStkCR33ydpk6R9kv4oaaFn608KAEA3aWiQFi6U7rkn\n+9fO6a1yd98l6ax2vj2pnXOWS1qes0YBAJBDlZXSggXSxInS/PnZv37On3EjWkpKSoJuQl6iX3OH\nvs0N+jVz9fXSz38u/eu/Sg89JF13XW5+Tk4XYMkVM+MOOgAgNFJT9qpV0vnnt/05M5N3cXAaiRsA\ngE5KTdlr1khTp+b+Z7LJCAAAnVBZKY0ZIzU2Sm++2T1FWyJxAwCQkSBSdioSNwAAaQoqZacicQMA\n0IGgU3YqEjcAAGfQlLL/9rfgUnYqEjcAAG3ornnZmSJxAwDQSuuUHZaiLZG4AQBoFtaUnYrEDQCA\nwp2yU5G4AQCxVl8vlZdLW7eGN2WnInEDAGKrKWWfPBnulJ2KxA0AiJ0oPMtuD4kbABArUXmW3R4S\nNwAgFqKcslORuAEAeS/qKTsViRsAkLcaGhIpOyojxtNB4gYA5KXKSqm4OFojxtNB4gYA5JV8TNmp\nSNwAgLyRryk7FYkbABB5+TJiPB0kbgBApOXTiPF0kLgBAJEUp5SdisQNAIicppTd2BiPlJ2KxA0A\niIzUlL1mjTR1atAt6n4kbgBAJLR+lh3Hoi2RuAEAIUfKbonEDQAILVL215G4AQChE9cR4+kgcQMA\nQiVu87IzReIGAIQCKTs9JG4AQOBI2ekjcQMAAsOI8cyRuAEAgaioaLn6GUU7PSRuAEC3ImV3DYkb\nANBtKioS+2UzL7vzSNwAgJxjxHj2kLgBADnVOmVTtLuGxA0AyAlSdm6QuAEAWce87NwhcQMAsoaU\nnXskbgBAVpCyuweJGwDQJfX1Unm5tHUrKbs7kLgBAJ3WlLJPniRldxcSNwAgYzzLDg6JGwCQEZ5l\nB4vEDQBICyk7HEjcAIAOkbLDg8QNAGhXQ0MiZTNiPDxI3ACANlVWJtYYZ8R4uJC4AQAtMC873Ejc\nAIBmzMsOPxI3AIAR4xFC4gaAmGPEeLSQuAEgpkjZ0UTiBoAYakrZjY2k7KghcQNAjKSm7DVrpKlT\ng24RMkXiBoCYaP0sm6IdTSRuAMhzpOz8QuIGgDxGys4/JG4AyEOMGM9fOU3cZrbWzGrN7I2UY4vN\n7LCZ7Ul+TUn53t1m9o6ZVZtZWS7bBgD5innZ+c3cPXcXN7taUoOk/+PuY5LHFkuqd/dVrT47UtLj\nksZLGiDpeUlDvY0GmllbhwEg1kjZ4WdmcnfryjVymrjd/UVJdW18q61Gz5C00d1PufsBSe9ImpDD\n5gFA3iBlx0dQg9NuM7O9ZvawmfVJHiuUdCjlMzXJYwCAdtTXS7fcIs2dKz34oLRunXT++UG3CrkU\nROF+UNIQdx8r6Yik3wXQBgCIvNarnzFiPB66fVS5u3+c8vZ/S9qafF0jqSjlewOSx9q0ZMmS5tcl\nJSUqKSnJWhsBIMyYlx0dVVVVqqqqyuo1czo4TZLMbLCkre5enHzfz92PJF//TNJ4d7/BzEZJekzS\nd5S4Rf6cGJwGAC1UVkoLFkgTJ0qrVnFbPGqyMTgtp4nbzB6XVCLpG2b2gaTFkiaa2VhJpyUdkPTf\nJcnd95nZJkn7JH0paSHVGQAS6uul8nJp61ZGjMddzhN3LpC4AcQJKTt/hD5xAwA6j3nZaAtrlQNA\nCDEvG+0hcQNAiDBiHB0hcQNASDAvG+kgcQNAwEjZyASJGwACRMpGpijcEXT48GGVlpZq9OjRKi4u\n1r333itJqqurU1lZmYYPH65rr71WJ06caD5n+fLlGjp0qEaOHKmdO3cG1XQASa3XGF+7lmleSA+F\nO4J69uypVatW6a233tLLL7+sBx54QG+//bZWrFihSZMmaf/+/SotLdXy5cslSfv27dOmTZtUXV2t\nbdu2aeHChWIePBCc1iPGSdnIBIU7gvr166exY8dKknr37q2RI0fq8OHD2rx5s+bOnStJmjt3rp59\n9llJ0pYtWzR79mz17NlTgwcP1tChQ7V79+7A2g/EVWrKfuABdvJC51C4I+7AgQPau3evrrzyStXW\n1qqgoEBSorgfPXpUklRTU6Oior/v31JYWKiamnb3bwGQA8zLRrYwqjzCGhoaNHPmTK1evVq9e/eW\nWctV9Fq/T0dnzkF6eDwRTw0NiRHjrDGObCFxR9SpU6c0c+ZM3XTTTZoxY4YkqaCgQLW1tZKkI0eO\nqG/fvpISCfvQoUPN5x4+fFiFhYXtXtvdu/S1ePHiUFwjyLZ8/LHrhz90DR3q2rWLgh1XlZVScbF0\n8iQpG9lD4Y6o+fPna9SoUVq0aFHzsenTp+uRRx6RJG3YsKG5oE+fPl0bN25UY2Oj3n//fb377rua\nMGFCEM2OhWeeSfxlXVgo7d0rffe7QbcI3a2+Xlq4kGfZyA1ulUfQrl279Nhjj6m4uFiXX365zEzL\nli1TeXm5Zs2apXXr1mnQoEHatGmTJGnUqFGaNWuWRo0apbPPPlsPPvggt8Rz4Ngx6bbbpNdek556\nSrrqqqBbhCCk7uT15psUbGQf23qiheSWc126RlVVlUpKSgK/Rne25ZlnpFtvlW64Qfr1r6Vzzmn5\n/Wz0K8KNnbyQjmxs60nhRgsUmMw0pew9e6T169tP2fRrfmO/bKQrG4WbZ9xAJ6U+y379dW6NxxHz\nshEEnnEDGTp2TLr9dukvf+FZdpzxLBtBIXEDGXj66UTKvuiixIhxinb8NDQwYhzBInEDaUgdMf70\n00zxiitSNsKAxB1RCxYsUEFBgcaMGdN8bOnSpRowYIDGjRuncePGafv27c3fY3ewzmNeNkjZCBMS\nd0TNmzdPt99+u26++eYWx++44w7dcccdLY5VV1c37w52+PBhTZo0Se+88w5zuTuQ+iyblB1fpGyE\nDYk7oq6++mpdcMEFXzve1pSjzZs3sztYhppSdtOzbIp2/DBiHGFF4c4z999/v8aOHasf//jHOnHi\nhCR2B8vEsWPSnDnSXXclRoz/7nfSuecG3Sp0N3byQphRuPPIwoUL9d5772nv3r3q16+f7rzzzqCb\nFCmpKZt52fFEykYU8Iw7j3zrW99qfv2Tn/xE06ZNk5T57mBLlixpfl1SUpKVpUfDLBfzsquqqlRV\nVdX1C6HbND3LLi3lWTbCjSVPI+zAgQOaNm2a3nzzTUmJrTz79esnSbrnnnv0pz/9SY8//rj27dun\nG2+8Ua+++qpqamo0efLkdgenxW1pztQ1xn/1q9zdFo9bv0ZJ6hrja9ZIU6cG3SLks2wseUrijqgb\nbrhBVVVV+uSTTzRw4EAtXbpUL7zwgvbu3asePXpo8ODBeuihhySxO1hbmJcNiRHjiCYSN1qIQzLs\naCevXIhDv0YJKRtBIXEDGWCNcUikbEQfo8oRC00jxvv3Z43xuGLEOPIFiRt5jZQNiZSN/ELiRt5i\nXjZI2chHJG7knaYR43v2kLLjjJSNfEXijqi2dgerq6tTWVmZhg8frmuvvbZ5yVMpPruDpe7kRcqO\np9SU/eCDpGzkHwp3RM2bN087duxocWzFihWaNGmS9u/fr9LSUi1fvlyStG/fvubdwbZt26aFCxfm\n3dSk1DXGn346scZ4d0zzQrhUVCTWGG9sTKRspnkhH1G4I6qt3cE2b96suXPnSpLmzp2rZ599VpK0\nZcuWvN4d7JlnEn9ZNz3LZjGV+GlK2T/6USJlr11Lykb+onAH6L777lNdXV3Wrnf06FEVFBRIkvr1\n66ejR49Kyt/dwZpS9t13S08+ScqOq4qKxOORpp28SNnIdxTuANXW1mr8+PGaNWuWtm/fnvXb1/m8\nrGlqymZedjy1Ttk8y0ZcMKo8QL/+9a/1q1/9Sjt37tT69et12223adasWVqwYIEuvvjijK9XUFCg\n2tpaFRQU6MiRI+rbt6+k/NodLHVe9pNPhrdgsztYblVUsJMX4ou1ykPg9ddf1/r167V9+3ZNnDhR\nr7zyiiZPnqzf/OY3Zzyv9e5g5eXluvDCC1VeXq6VK1eqrq5OK1asyJvdwYJYYzxbwtyvUZK6xvhD\nD0nXXRd0i4DMZGOtcrl75L4SzY6+3//+9z5u3DgvKyvzTZs2eWNjo7u7f/XVVz5kyJAznjtnzhzv\n37+/9+rVy4uKinzdunV+/Phxv+aaa3zYsGE+efJkr6ura/78smXL/OKLL/YRI0b4jh072r1uGPv2\n44/dZ892HzbM/cUXg25N54SxX6OmosJ98GD3efPcU361gUhJ/l3QpRpI4g7Q4sWLNX/+fA0aNOhr\n36uurtbIkSO7vU1hS4ZRTtmpwtavUULKRj7JRuKmcKOFsBSY1P2y16+P/hSvsPRr1KSufrZqFc+y\nEX3ZKNyMKkfopK5+tndv9Is2MldfLy1cyBrjQFsYVY7QaBoxzhrj8cYa48CZkbgRCszLBjt5Aekh\ncSNQqc+yn3qK2+JxRcoG0kfiRmB4lg1SNpA5EnceGjx4sPr06aMePXro7LPP1u7du1VXV6cf/vCH\nOnjwoAYPHqxNmzapT58+gbQvdfUznmXHFykb6BwSdx7q0aOHqqqq9NprrzXvAtbelp/drSllN+3k\nRdGOn4YGRowDXUHhzkPurtOnT7c41t6Wn90ldb/sp55iJ6+4qqxM/MPt5MlEymYxFSBzFO48ZGaa\nPHmyxo8fr4cffliSmjcfkVpu+dkdnn468Zd1//6MGI8r5mUD2cMz7jy0a9cu9e/fXx9//LHKyso0\nfPjwr20ocqYtP7O1O1jqiPGnn47X4DN2B/s7nmUD2cWSp3lu6dKl6t27tx5++GFVVVU1b/k5ceJE\nVVdXf+3z2VqaM1/WGM+WOC55yhrjwNex5Cm+5vPPP1dDQ4Mk6bPPPtPOnTtVXFys6dOn65FHHpEk\nbdiwQTNmzMjJzz92TJo9W7r77kTK5ll2PFVWJhbU+dvfeJYNZBu3yvNMbW2trr/+epmZTp06pRtv\nvFFlZWW64oorNGvWLK1bt06DBg3Spk2bsv6zU1P2+vUU7DgiZQO5x61ytNCZW7qpa4znw05euRCH\nW+VNz7JLSxN3WniWDXwdt8oRuNZrjFO04yd19bMHH5TWrqVoA7nErXJ0SuudvCjY8cSIcaD7kbiR\nsdTVz0jZ8dQ6ZTMvG+g+JG6krWleNvtlxxspGwgWiRtpab2TF0U7ftjJCwiHnBZuM1trZrVm9kbK\nsQvMbKeZ7TezHWbWJ+V7d5vZO2ZWbWZluWxbHG3fvl0jRozQsGHDtHLlyrTOaZqXnbrG+Lnn5rih\nCB3mZQPhkevEvV7Sta2O3SXpeXcfLqlS0t2SZGajJM2SNFLSVEkP2pnW5URGTp8+rdtuu007duzQ\nW2+9pSeeeEJvv/32Gc9pWmO8sDCznbyysdRntpYLDVNbooiUDYRPTgu3u78oqa7V4RmSNiRfb5D0\nveTr6ZI2uvspdz8g6R1JE3LZvjjZvXu3hg4dqkGDBunss8/W7NmztXnz5jY/25Syf/GLzq1+FqZi\nGaa2RA0pGwinDgu3md1uZhdk8Wf2dfdaSXL3I5L6Jo8XSjqU8rma5DFkQU1NjYqKiprfDxgwQDU1\nNW1+NvVZNiPG44cR40C4pZO4CyT9ycw2mdmUHNy+zu/lpCKI/bLjqyllNzYmUvbUqUG3CEBrHU4H\nc/f/YWb/U1KZpHmS7jezTZLWuvv/68TPrDWzAnevNbN+kpo2hq6RVJTyuQHJY23K1taTcVFYWKgP\nPvig+f3hw4dVWNj2DY2rr+76v82WLl0aimtk6zrZaktYpa4xvmYNBRvIllxs8Zv2WuVmdpkShXuK\npBckXSnpOXf/eQfnDZa01d2Lk+9XSjru7ivNrFzSBe5+V3Jw2mOSvqPELfLnJA1ta1Fy1irP3Fdf\nfaXhw4eroqJC/fv314QJE/TEE09o5MiRQTcNAUudl71qFbfFgVzKxlrlHSZuM1sk6WZJxyQ9LOmf\n3f1LM+uhxACydgu3mT0uqUTSN8zsA0mLJa2Q9KSZzZd0UImR5HL3fckkv0/Sl5IWUp2z56yzztL9\n99+vsrIynT59WgsWLKBox1x9vVReLm3dyk5eQJR0mLjNbKmkde5+sI3vjXT36lw17gxtoqYDXUDK\nBoLRLbuDufvitop28nvdXrSRG51ZnOXw4cMqLS3V6NGjVVxcrHvvvVeSVFdXp7KyMg0fPlzXXnut\nTpw40eG1Tp8+rXHjxmn69OmdvsaJEyf0gx/8QCNHjtTo0aP16quvZnyde+65R5deeqnGjBmjG2+8\nUY2NjWldY8GCBSooKNCYMWOaj53pvOXLl2vo0KEaOXKkdu7c2eGfLVuYlw1EH0ueolOLs0hSz549\ntWrVKr311lt6+eWX9cADD+jtt9/WihUrNGnSJO3fv1+lpaVavnx5h9davXq1Ro0a1fy+M9dYtGiR\nrrvuOlVXV+v111/XiBEjMrrOhx9+qPvuu0979uzRG2+8oVOnTumJJ55I6xrz5s3Tjh07Whxr77x9\n+/Zp06ZNqq6u1rZt27Rw4cJu2aubedlAnnD3yH0lmo1sefnll33KlCnN75cvX+4rVqzI+DozZszw\n5557zocPH+5Hjhxxd/ePPvrIhw8ffsbzDh065JMmTfIXXnjBp02b5u6e8TVOnDjhQ4YM+drxTK5T\nU1PjAwcO9OPHj/uXX37p06ZNy+jPc+DAAS8uLu7wZ7fu3ylTpvgrr7xyxj9fV/z7v7v/4z+6Dxjg\n/sc/5uzHAEhDsn51qQaSuJHR4iztOXDggPbu3asrr7xStbW1KigokCT169dPR48ePeO5P/vZz/Tb\n3/5WqUsEZHqN999/X9/85jc1b948jRs3Tj/96U/1+eefZ3Sdiy66SHfeeacGDhyowsJC9enTR5Mm\nTcq4LU2OHj3a5nmt+7uwsDDj/k4X87KB/EPhRpc1NDRo5syZWr16tXr37q3Wa/Scac2eP/zhDyoo\nKNDYsWPPeLu4o3V/Tp06pT179ujWW2/Vnj17dN5552nFihUZteXTTz/V5s2bdfDgQX344Yf67LPP\n9Nhjj2V0jTPpzqX3W69+tnYtz7KBfEHhRkaLs7R26tQpzZw5UzfddJNmzJghSSooKFBtba0k6ciR\nI+rbt2+75+/atUtbtmzRkCFDNGfOHFVWVuqmm25Sv3790r6GlLhLUFRUpCuuuEKS9P3vf1979uzJ\nqC3PP/+8hgwZogsvvFBnnXWWrr/+er300ksZXSNVe+cVFhbq0KG/r+6bSX+ng5QN5DcKNzR+/Hi9\n++67OnjwoBobG7Vx48bm0d0dmT9/vkaNGqVFixY1H5s+fboeeeQRSdKGDRuaC3pbli1bpg8++EDv\nvfeeNm7cqNLSUj366KOaNm1a2teQEkWyqKhIf/3rXyVJFRUVGj16dEZtGThwoF555RWdPHlS7q6K\nigqNGjUq7Wv438dgnLEfpk+fro0bN6qxsVHvv/++3n33XU2Y0PX9dEjZQEx09SF5EF9icFrWbdu2\nzYcNG+aXXHKJL1++PK1zXnzxRe/Ro4dfdtllPnbsWL/88st927Zt/sknn/g111zjw4YN88mTJ3td\nXV1a16uqqmoenNaZa+zdu9evuOIKv+yyy/z666/3Tz/9NOPrLFmyxEeMGOHFxcV+8803e2NjY1rX\nmDNnjvfv39979erlRUVFvm7dOj9+/Hi75y1btswvvvhiHzFihO/YsSOt/jmTigr3wYPd581zT7O7\nAQRAWRiclvaSp2HCAixAQuoa46x+BoRftyzAAiCcmJcNxFOHa5UDCJeGhkTKZo1xIJ5I3ECEVFZK\nxcXSyZOkbCCuSNxABLCTF4AmJG4g5JqeZZOyAUgkbiC0GDEOoC0kbiCEGDEOoD0kbiBESNkAOkLi\nRqT8+c9/1mWXXabGxkZ99tlnuvTSS7Vv376gm5UVpGwA6WDlNETOL3/5S33xxRf64osvVFRUpPLy\n8qCb1CXMywbiIxsrp1G4ETlffvmlxo8fr3POOUcvvfRSt26XmW2VldKCBdLEidKqVWwKAuS7bBRu\nnnEjco4dO6aGhgadOnVKJ0+e1DnnnBN0kzJGygbQWSRuRM6MGTM0Z84cvf/++/rwww913333Bd2k\njJCygfgicSN2Hn30UfXq1UuzZ8/W6dOnddVVV6mqqkolJSVBN61DjBgHkA0kbqAbkLIBSCRuIPRI\n2QCyjXncQI40zctubGReNoDsIXEDWZaasteskaZODbpFAPIJiRvIotarn1G0AWQbiRvIAlI2gO5C\n4ga6iJQNoDuRuIFOYsQ4gCCQuIFOYCcvAEEhcQMZIGUDCBqJG0gTKRtAGJC4gQ4wYhxAmJC4gTOo\nqGi5+hlFG0DQSNxAG0jZAMKKxA20UlEhFRczLxtAOJG4gSRGjAOIAhI3oK+nbIo2gLAicSPWSNkA\noobEjdhiXjaAKCJxI3ZI2QCijMSNWCFlA4g6Ejdiob5eKi+Xtm4lZQOINhI38l5Tyj55kpQNIPpI\n3MhbPMsGkI9I3MhLPMsGkK9I3MgrpGwA+Y7EjbxBygYQByRuRF5DQyJlM2IcQByQuBFplZWJNcYZ\nMQ4gLkjciCTmZQOIKxI3Iod52QDijMSNyGDEOACQuBERjBgHgAQSN0KNlA0ALZG4EVpNKbuxkZQN\nAE1I3Aid1JS9Zo00dWrQLQKA8CBxI1RaP8umaANASyRuhAIpGwDSQ+JG4EjZAJA+EjcCw4hxAMhc\nYInbzA6Y2etm9pqZ7U4eu8DMdprZfjPbYWZ9gmofcot52QDQOebuwfxgs/ck/Sd3r0s5tlLSJ+7+\nGzMrl3SBu9/VxrkeVLvRNaRsAHFmZnJ368o1gnzGbW38/BmSNiRfb5D0vW5tEXKKlA0AXRd04v5U\n0leSHnL3h82szt0vSPnMcXe/sI1zSdwRwohxAEjIRuIOcnDaVe7+kZl9S9JOM9svqXU1pjpHXGWl\ntGCBVFqaSNnnnx90iwAg2gIr3O7+UfK/H5vZs5ImSKo1swJ3rzWzfpKOtnf+kiVLml+XlJSopKQk\ntw1GRkjZACBVVVWpqqoqq9cM5Fa5mZ0rqYe7N5jZeZJ2Sloq6RpJx919JYPToqspZU+cKK1aRcoG\ngCbZuFUeVOH+tqR/UeJWeE9Jj7n7CjO7UNImSUWSDkqa5e6ftnE+hTuE6uul8nJp61ZGjANAWyJb\nuLuKwh0+pGwA6FjUB6chDzAvGwC6F2uVo9OYlw0A3Y/EjYwxYhwAgkPiRkaaUnZjIzt5AUAQSNxI\nCykbAMKBxI0OkbIBIDxI3GgXKRsAwofEjTa1HjFO0QaAcCBxowXmZQNAuJG40Yx52QAQfiRuqKEh\nkbJZYxwAwo/EHXOVlVJxsXTyJCkbAKKAxB1TpGwAiCYSdwyRsgEgukjcMULKBoDoI3HHBCkbAPID\niTvPkbIBIL+QuPMYKRsA8g+JOw+RsgEgf5G48wwpGwDyG4k7T5CyASAeSNx5gJQNAPFB4o4wdvIC\ngPghcUcUO3kBQDyRuCOGlA0A8UbijpCmlN3YSMoGgLgicUdAaspes0aaOjXoFgEAgkLiDrnWz7Ip\n2gAQbyTukCJlAwDaQuIOIVI2AKA9JO4QYcQ4AKAjJO6QYF42ACAdJO6AkbIBAJkgcQeIlA0AyBSJ\nOwCMGAcAdBaJu5tVVLRc/YyiDQDIBIm7m5CyAQDZQOLuBhUVif2ymZcNAOgqEncOMWIcAJBtJO4c\naZ2yKdoAgGwgcWcZKRsAkEsk7ixiXjYAINdI3FlAygYAdBcSdxeRsgEA3YnE3Un19VJ5ubR1Kykb\nANB9SNyd0JSyT54kZQMAuheJOwM8ywYABI3EnSaeZQMAwoDE3QFSNgAgTEjcZ0DKBgCEDYm7DQ0N\niZTNiHEAQNiQuFuprEysMc6IcQBAGJG4k5iXDQCIAhK3mJcNAIiOWCduRowDAKImtombEeMAgCiK\nXeImZQMAoixWibspZTc2krIBANEUi8SdmrLXrJGmTg26RQAAdE7eJ+7Wz7Ip2gCAKMvbxE3KBgDk\no7xM3KRsAEC+yqvEzYhxAEC+C2XiNrMpZva2mf3VzMrTOYd52QCAOAhd4TazHpLul3StpNGS5pjZ\niPY+X18v3XKLNHeu9MAD0rp10vnnd1dr809VVVXQTchL9Gvu0Le5Qb+GV+gKt6QJkt5x94Pu/qWk\njZJmtPVBUnb28T9rbtCvuUPf5gb9Gl5hfMZdKOlQyvvDShTzFm65hWfZAID4CWPhTktTyua2OAAg\nTszdg25DC2Z2paQl7j4l+f4uSe7uK1M+E65GAwCQJne3rpwfxsJ9lqT9kq6R9JGk3ZLmuHt1oA0D\nACAEQnemaOmeAAAEW0lEQVSr3N2/MrPbJO1UYvDcWoo2AAAJoUvcAACgfWGcDnZGnVmcBV9nZgPM\nrNLM3jKzN83sn5LHLzCznWa238x2mFmfoNsaRWbWw8z2mNmW5Hv6NQvMrI+ZPWlm1cnf3e/Qt11n\nZj8zs38zszfM7DEz60W/do6ZrTWzWjN7I+VYu31pZneb2TvJ3+mydH5GpAp3pouz4IxOSbrD3UdL\n+s+Sbk325V2Snnf34ZIqJd0dYBujbJGkfSnv6dfsWC3pj+4+UtJlkt4WfdslZnaRpNsljXP3MUo8\nQp0j+rWz1itRo1K12ZdmNkrSLEkjJU2V9KCZdThwLVKFWxkszoIzc/cj7r43+bpBUrWkAUr054bk\nxzZI+l4wLYwuMxsg6TpJD6ccpl+7yMz+o6T/4u7rJcndT7n7CdG32XCWpPPMrKekcyTViH7tFHd/\nUVJdq8Pt9eV0SRuTv8sHJL2jNtYtaS1qhbutxVkKA2pL3jCzwZLGSnpFUoG710qJ4i6pb3Ati6x7\nJP2zpNQBJPRr131b0jEzW598DLHGzM4Vfdsl7v6hpN9J+kCJgn3C3Z8X/ZpNfdvpy9Y1rUZp1LSo\nFW5kmZn1lvSUpEXJ5N16tCKjFzNgZv9NUm3ybsaZbnnRr5nrKWmcpAfcfZykz5S4BcnvbBeY2flK\nJMJBki5SInnfKPo1l7rUl1Er3DWSBqa8H5A8hk5I3hZ7StKj7r45ebjWzAqS3+8n6WhQ7YuoqyRN\nN7P3JD0hqdTMHpV0hH7tssOSDrn7n5Pvn1aikPM72zWTJL3n7sfd/StJ/yLpu6Jfs6m9vqyRVJTy\nubRqWtQK958kXWJmg8ysl6TZkrYE3KYoWydpn7uvTjm2RdKPkq/nStrc+iS0z91/4e4D3X2IEr+f\nle5+k6Stol+7JHmr8ZCZDUseukbSW+J3tqs+kHSlmf1DcmDUNUoMrKRfO8/U8o5be325RdLs5Cj+\nb0u6RIlFx8588ajN4zazKUqMLG1anGVFwE2KJDO7StL/lfSmErdtXNIvlPil2aTEvwIPSprl7p8G\n1c4oM7P/KulOd59uZheKfu0yM7tMiUF/Z0t6T9I8JQZW0bddYGaLlfiH5peSXpP0Y0n/QfRrxszs\ncUklkr4hqVbSYknPSnpSbfSlmd0taYESfb/I3Xd2+DOiVrgBAIizqN0qBwAg1ijcAABECIUbAIAI\noXADABAhFG4AACKEwg0AQIRQuAEAiBAKNwAAEULhBiBJMrMrzOz15PKL55nZvyX3CwYQIqycBqCZ\nmf0vJfZjPkeJDT1WBtwkAK1QuAE0M7OzldjM5wtJ33X+ggBCh1vlAFJ9U1JvJTaY+IeA2wKgDSRu\nAM3MbLMS+4h/W9JF7n57wE0C0ErPoBsAIBzM7CZJje6+0cx6SNplZiXuXhVw0wCkIHEDABAhPOMG\nACBCKNwAAEQIhRsAgAihcAMAECEUbgAAIoTCDQBAhFC4AQCIEAo3AAAR8v8BoAgcZaLBwXsAAAAA\nSUVORK5CYII=\n",
"text/plain": [
""
]
},
"execution_count": 49,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ax1.plot(x,y)\n",
"ax1.set_xlabel('x')\n",
"ax1.set_ylabel('y')\n",
"\n",
"\n",
"ax2.plot(x,y)\n",
"ax2.set_xlabel('x')\n",
"ax2.set_ylabel('y')\n",
"\n",
"fig # Show figure object"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exercise 3\n",
"\n",
"** Create the plot below by adding two axes to a figure object at [0,0,1,1] and [0.2,0.5,.4,.4]**"
]
},
{
"cell_type": "code",
"execution_count": 50,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAdoAAAFBCAYAAADQRW4vAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAGzxJREFUeJzt3X9sVXWe//HX21K/5Ou4KBIJ3BbiQEvLAoUN5ceE+C06\nw6/J4EZNppKMgbBTf1XXv1ZN3FDiZhxMvsm4dtap0dTohmKyGut3hxY3lRuHXTrFiDALdEB2htLL\nDDvAggzJKLTv7x+tnba09NLezz33lOcjuUlP74fTV47HvvI559Nzzd0FAADCuCnqAAAAjGcULQAA\nAVG0AAAERNECABAQRQsAQEAULQAAAY1YtGb2hpmdNrOD1xjzj2Z2zMw+M7OFmY0IAEB8pTOjrZe0\nerg3zWytpFnuXiTpEUk/y1A2AABib8Sidfc9kv7nGkPuk/RW79hfSppkZlMzEw8AgHjLxD3ahKST\n/bZTvd8DAOCGx2IoAAACmpCBfaQkFfbbLuj93lXMjAcrAwBiyd1tNP8u3Rmt9b6G8oGkhyXJzJZJ\nOu/up4fbkbvzCvDasmVL5BnG44vjynGN24tjG+Y1FiPOaM1su6QKSXeYWYekLZJu7ulMf83dd5rZ\nOjP7XNIlSZvGlAgAgHFkxKJ19w1pjKnOTBwAAMYXFkONExUVFVFHGJc4rmFwXMPh2OYeG+u15+v6\nYWaezZ8HAEAmmJk88GIoAAAwChQtAAABUbQAAARE0QIAEBBFCwBAQBQtAAABUbQAAARE0QIAEBBF\nCwBAQBQtAAABUbQAAARE0QIAEBBFCwBAQBQtAAABUbQAAARE0QIAEBBFCwBAQBQtAAABUbQR2rx5\ns6ZOnaoFCxYMO+app55SUVGRFi5cqM8++yyL6QAAmUDRRmjTpk3atWvXsO83NTXp+PHjOnbsmOrq\n6vToo49mMR0AIBMo2gitWLFCt99++7DvNzY26uGHH5YkLV26VBcuXNDp06ezFQ8AkAEUbQ5LpVIq\nLCzs204kEkqlUhEmAgBcL4oWAICAJkQdAMNLJBI6efJk33ZnZ6cSicSQY80sW7GAjHD3qCMAWcGM\nNmLuPuwvnPXr1+utt96SJLW2tuq2227T1KlTR9xXlK8tW7ZEniHXsuRKjlzKAtxImNFGaMOGDUom\nkzp79qxmzJihrVu36quvvpKZqaqqSuvWrdPOnTs1e/Zs3XLLLaqvr486MgDgOlG0Edq+ffuIY2pr\na7OQBAAQCpeOkVEVFRVRR+iTK1lyJYeUW1mAG4Vl836JmTn3Z8IwM+59ITY4XxE3vefsqFadMqMF\nACAgihYAgIAoWgAAAqJoAQAIiKIFACAgihYAgIAoWgAAAqJoAQAIiKIFACAgihYAgIAoWgAAAqJo\nAQAIiKKNUHNzs0pKSlRcXKxt27Zd9f4XX3yh9evXa+HChZo/f77efPPN7IcEAIwJn94Tke7ubhUX\nF6ulpUXTp09XeXm5duzYoZKSkr4xL774or744gu9+OKLOnPmjObMmaPTp09rwoSrP0aYT0NBnHC+\nIm749J4YamtrU1FRkWbOnKn8/HxVVlaqsbFxwBgz08WLFyVJFy9e1B133DFkyQIAchdFG5FUKqXC\nwsK+7YKCAqVSqQFjqqurdfjwYU2fPl1lZWV6+eWXsx0TADBGFG0O27VrlxYtWqRTp05p//79euKJ\nJ/THP/4x6lgAgOvAdciIJBIJdXR09G13dnYqkUgMGFNfX6/nnntOkjRr1izdddddam9v1+LFi4fc\nZ01NTd/XFRUVqqioyHhuYDSSyaSSyWTUMYBIpLUYyszWSPqJembAb7j7tkHv/4Wkf5Y0Q1KepP/r\n7m8OsR8WQ/Xq6urSnDlz1NLSomnTpmnJkiVqaGhQaWlp35gnnnhCd955p7Zs2aLTp09r8eLFOnDg\ngCZPnnzV/lhcgjjhfEXcjGUx1IgzWjO7SVKtpHslnZK0z8wa3b2937AnJB1y9/VmNkXSr83sn939\nymhC3Qjy8vJUW1urVatWqbu7W5s3b1Zpaanq6upkZqqqqtLzzz+vjRs3asGCBZKkl156aciSBQDk\nrhFntGa2TNIWd1/bu/2sJO8/q+39XoG7V5vZXZJ2uXvxEPtiRhsIMwTECecr4ib0n/ckJJ3st93Z\n+73+aiXNNbNTkg5I+tvRhAEAYLzJ1GKo1ZL2u/s9ZjZL0r+Z2QJ3v2qJLAt2AAC5LpML+NK9dFzj\n7mt6t4e6dPyvkl5093/v3W6R9Iy7fzJoX1w6DoRLcYgTzlfETehLx/skzTazmWZ2s6RKSR8MGnNC\n0rd7w0yVVCzpv0YTCACA8WTES8fu3mVm1ZI+1J//vOeImT3S87a/JukfJL1pZgd7/9nfufu5YKkB\nAIgJPlRgnOBSHOKE8xVxw4cKAACQoyhaAAAComgBAAiIogUAICCKFgCAgChaAAAComgBAAiIogUA\nICCKNkLNzc0qKSlRcXGxtm3bNuSYZDKpRYsWad68eVq5cmWWEwIAxoonQ0Wku7tbxcXFamlp0fTp\n01VeXq4dO3aopKSkb8yFCxf0rW99Sx9++KESiYTOnDmjKVOmDLk/nrSDOOF8RdzwZKgYamtrU1FR\nkWbOnKn8/HxVVlaqsbFxwJjt27frgQceUCLR8/G/w5UsACB3UbQRSaVSKiws7NsuKChQKpUaMObo\n0aM6d+6cVq5cqfLycr399tvZjgkAGKNMffA7Arhy5Yo+/fRTffTRR7p06ZKWL1+u5cuXa/bs2VFH\nAwCkiaKNSCKRUEdHR992Z2dn3yXirxUUFGjKlCmaOHGiJk6cqLvvvlsHDhwYtmhramr6vq6oqFBF\nRUWI6MB1SyaTSiaTUccAIsFiqIh0dXVpzpw5amlp0bRp07RkyRI1NDSotLS0b0x7e7uefPJJNTc3\n68svv9TSpUv1zjvvaO7cuVftj8UliBPOV8TNWBZDMaONSF5enmpra7Vq1Sp1d3dr8+bNKi0tVV1d\nncxMVVVVKikp0erVq7VgwQLl5eWpqqpqyJIFAOQuZrTjBDMExAnnK+KGP+8BACBHUbQAAARE0QIA\nEBBFCwBAQBQtAAABUbQAAARE0QIAEBBFCwBAQBQtAAABUbQAAARE0QIAEBBFCwBAQBQtAAABUbQA\nAARE0UaoublZJSUlKi4u1rZt24Ydt2/fPuXn5+u9997LYjoAQCZQtBHp7u5WdXW1du3apUOHDqmh\noUHt7e1Djnv22We1evXqCFICAMaKoo1IW1ubioqKNHPmTOXn56uyslKNjY1XjXvllVf04IMP6s47\n74wgJQBgrCjaiKRSKRUWFvZtFxQUKJVKDRhz6tQpvf/++3rsscfk7tmOCADIAIo2hz399NMD7t1S\ntgAQPxOiDnCjSiQS6ujo6Nvu7OxUIpEYMOaTTz5RZWWl3F1nzpxRU1OT8vPztX79+iH3WVNT0/d1\nRUWFKioqQkQHrlsymVQymYw6BhAJy+YsycycWVmPrq4uzZkzRy0tLZo2bZqWLFmihoYGlZaWDjl+\n06ZN+t73vqf7779/yPfNjBkvYoPzFXHTe87aaP4tM9qI5OXlqba2VqtWrVJ3d7c2b96s0tJS1dXV\nycxUVVU1YLzZqP77AgAixox2nGCGgDjhfEXcjGVGy2IoAAAComgBAAiIogUAICCKFgCAgChaAAAC\nomgBAAiIogUAICCKFgCAgNIqWjNbY2btZnbUzJ4ZZkyFme03s/80s92ZjQkAQDyN+GQoM7tJ0lFJ\n90o6JWmfpEp3b+83ZpKk/5C0yt1TZjbF3c8MsS+eDBUIT9pBnHC+Im5CPxlqiaRj7n7C3S9L2iHp\nvkFjNkh6191TkjRUyQIAcCNKp2gTkk722+7s/V5/xZImm9luM9tnZj/IVEAAAOIsU5/eM0HSX0m6\nR9Itkvaa2V53/zxD+wcAIJbSKdqUpBn9tgt6v9dfp6Qz7v4nSX8ys48llUm6qmj5cHIAQK5LJpNK\nJpMZ2Vc6i6HyJP1aPYuhfiepTdJD7n6k35gSSa9IWiPpf0n6paTvu/vhQftiMVQ/zc3Nevrpp/s+\nj/aZZwYu6N6+fbu2bdsmSbr11lv16quvav78+UPui8UliBPOV8RN0A9+d/cuM6uW9KF67um+4e5H\nzOyRnrf9NXdvN7Ndkg5K6pL02uCSxUDd3d2qrq5WS0uLpk+frvLyct13330qKSnpG/PNb35TH3/8\nsSZNmqTm5mb98Ic/VGtra4SpAQDXiw9+j0hra6u2bt2qpqYmSdKPf/xjmdlVs9qvnT9/XvPnz9fJ\nkyeHfJ8ZAuKE8xVxwwe/x1AqlVJhYWHfdkFBgVKpwbe+/+z111/X2rVrsxENAJBBmVp1jIB2796t\n+vp67dmzJ+ooAIDrRNFGJJFIqKOjo2+7s7NTicTgP0+WDh48qKqqKjU3N+v222+/5j5Z0Y1clckV\nnEDccI82Il1dXZozZ45aWlo0bdo0LVmyRA0NDSotLe0b09HRoXvvvVdvv/22li1bds39cc8LccL5\nirgJuuoYYeTl5am2tlarVq3q+/Oe0tJS1dXVycxUVVWlF154QefOndPjjz8ud1d+fr7a2tqijg4A\nuA7MaMcJZgiIE85XxA2rjgEAyFEULQAAAVG0AAAERNECABAQRQsAQEAULQAAAVG0AAAERNECABAQ\nRQsAQEAULQAAAVG0AAAERNECABAQRQsAQEAULQAAAVG0EWpublZJSYmKi4u1bdu2Icc89dRTKioq\n0sKFC/XZZ59lOSEAYKwo2oh0d3erurpau3bt0qFDh9TQ0KD29vYBY5qamnT8+HEdO3ZMdXV1evTR\nRyNKm75kMhl1hD65kiVXcki5lQW4UVC0EWlra1NRUZFmzpyp/Px8VVZWqrGxccCYxsZGPfzww5Kk\npUuX6sKFCzp9+nQUcdOWS7/IcyVLruSQcisLcKOgaCOSSqVUWFjYt11QUKBUKnXNMYlE4qoxAIDc\nRtECABDQhKgD3KgSiYQ6Ojr6tjs7O5VIJK4ac/LkyWuO6c/MMh90FLZu3Rp1hD65kiVXcki5lQW4\nEVC0ESkvL9fnn3+uEydOaNq0adqxY4caGhoGjFm/fr1++tOf6vvf/75aW1t12223aerUqUPuz92z\nERsAcJ0o2ojk5eWptrZWq1atUnd3tzZv3qzS0lLV1dXJzFRVVaV169Zp586dmj17tm655RbV19dH\nHRsAcJ0smzMhM3NmXgCAuDEzufuo7s+xGCpGcukBFyNl2b59u8rKylRWVqYVK1boV7/6VSQ5vrZv\n3z7l5+frvffeC5Ij3SzJZFKLFi3SvHnztHLlykhyfPHFF1q/fr0WLlyo+fPn68033wySQ5I2b96s\nqVOnasGCBcOO4aEsGPfcPWuvnh+H0ejq6vJZs2b5b3/7W//qq6+8rKzMjxw5MmDMzp07fd26de7u\n3tra6kuXLo0sy969e/38+fPu7t7U1BQkSzo5vh53zz33+He/+11/9913M54j3Sznz5/3uXPnemdn\np7u7/+EPf4gkx49+9CN/9tln+zJMnjzZL1++nPEs7u6/+MUvfP/+/T5//vwh38/WOQuMVW9/jar7\nmNHGRC494CKdLMuWLdOkSZP6vg7x97/p5JCkV155RQ8++KDuvPPOjGe4nizbt2/XAw880LdyfMqU\nKZHkMDNdvHhRknTx4kXdcccdmjAhzHKNFStW6Pbbbx/2/Tg+lAW4XhRtTOTSAy7SydLf66+/rrVr\n10aS49SpU3r//ff12GOPBV2ZnU6Wo0eP6ty5c1q5cqXKy8v19ttvR5Kjurpahw8f1vTp01VWVqaX\nX3454znSxUNZcCNg1TGC2r17t+rr67Vnz55Ifv7TTz894D5lyLIdyZUrV/Tpp5/qo48+0qVLl7R8\n+XItX75cs2fPzmqOXbt2adGiRfroo490/Phxfec739HBgwf1jW98I6s5gBsFRRsTIR5wETKLJB08\neFBVVVVqbm6+5uXDkDk++eQTVVZWyt115swZNTU1KT8/X+vXr896loKCAk2ZMkUTJ07UxIkTdffd\nd+vAgQMZLdp0ctTX1+u5556TJM2aNUt33XWX2tvbtXjx4ozlSFe2zlkgUqO9uTual1gMNWpXrlzp\nW+Ty5ZdfellZmR8+fHjAmJ///Od9C0v27t0bbGFJOllOnDjhs2fP9r179wbJkG6O/jZu3BhsMVQ6\nWY4cOeLf/va3/cqVK37p0iWfN2+eHzp0KOs5Hn/8ca+pqXF399///vdeUFDgZ8+ezWiO/n7zm9/4\nvHnzhnwvW+csMFYaw2IoZrQxkUsPuEgnywsvvKBz587p8ccfl7srPz9fbW1tWc/RX8hHVKaTpaSk\nRKtXr9aCBQuUl5enqqoqzZ07N+s5nn/+eW3cuLHvT25eeuklTZ48OaM5vrZhwwYlk0mdPXtWM2bM\n0NatW/XVV1/xUBbcUHhgBQAAI+CBFQAA5CiKFgCAgChaAAAComgBAAiIogUAICCKFgCAgChaAAAC\nomgBAAiIogUAICCKFgCAgChaAAACSqtozWyNmbWb2VEze+Ya48rN7LKZ3Z+5iAAAxNeIRWtmN0mq\nlbRa0l9KesjMSoYZ92NJuzIdEgCAuEpnRrtE0jF3P+HulyXtkHTfEOOelPQvkv47g/kAAIi1dIo2\nIelkv+3O3u/1MbPpkv7a3V+VFO5DPwEAiJlMLYb6iaT+924pWwAAJE1IY0xK0ox+2wW93+tvsaQd\nZmaSpkhaa2aX3f2DwTurqanp+7qiokIVFRXXGRkAgLCSyaSSyWRG9mXufu0BZnmSfi3pXkm/k9Qm\n6SF3PzLM+HpJ/8/d3xviPR/p5wEAkGvMTO4+qqu1I85o3b3LzKolfaieS81vuPsRM3uk521/bfA/\nGU0QAADGoxFntBn9YcxoAQAxNJYZLU+GAgAgIIoWAICAKFoAAAKiaAEACIiiBQAgIIoWAICAKFoA\nAAKiaAEACIiiBQAgIIoWAICAKFoAAAKiaAEACIiiBQAgIIoWAICAKFoAAAKiaAEACIiiBQAgIIoW\nAICAKFoAAAKiaAEACIiiBQAgIIoWAICAKFoAAAKiaAEACIiiBQAgIIoWAICAKFoAAAKiaAEACIii\nBQAgIIoWAICAKFoAAAKiaAEACIiiBQAgIIoWAICAKFoAAAKiaAEACIiiBQAgIIoWAICAKFoAAAKi\naAEACIiiBQAgIIoWAICAKFoAAAKiaAEACIiiBQAgIIoWAICAKFoAAAKiaAEACIiiBQAgoLSK1szW\nmFm7mR01s2eGeH+DmR3ofe0xs/mZjwoAQPyYu197gNlNko5KulfSKUn7JFW6e3u/McskHXH3C2a2\nRlKNuy8bYl8+0s8DACDXmJnc3Ubzb9OZ0S6RdMzdT7j7ZUk7JN3Xf4C7t7r7hd7NVkmJ0YQBAGC8\nSadoE5JO9tvu1LWL9G8kNY0lFAAA48WETO7MzFZK2iRpxXBjampq+r6uqKhQRUVFJiMAADBmyWRS\nyWQyI/tK5x7tMvXcc13Tu/2sJHf3bYPGLZD0rqQ17n58mH1xjxYAEDuh79HukzTbzGaa2c2SKiV9\nMCjADPWU7A+GK1kAAG5EI146dvcuM6uW9KF6ivkNdz9iZo/0vO2vSfp7SZMl/ZOZmaTL7r4kZHAA\nAOJgxEvHGf1hXDoGAMRQ6EvHAABglChaAAAComgBAAiIogUAICCKFgCAgChaAAAComgBAAiIogUA\nICCKFgCAgChaAAAComgBAAiIogUAICCKFgCAgChaAAAComgBAAiIogUAICCKFgCAgChaAAAComgB\nAAiIogUAICCKFgCAgChaAAAComgBAAiIogUAICCKFgCAgChaAAAComgBAAiIogUAICCKFgCAgCha\nAAAComgBAAiIogUAICCKFgCAgChaAAAComgBAAiIogUAICCKFgCAgChaAAAComgBAAiIogUAICCK\nFgCAgChaAAAComgBAAiIogUAICCKFgCAgChaAAAComgBAAiIogUAIKC0itbM1phZu5kdNbNnhhnz\nj2Z2zMw+M7OFmY0JAEA8jVi0ZnaTpFpJqyX9paSHzKxk0Ji1kma5e5GkRyT9LEBWXEMymYw6wrjE\ncQ2D4xoOxzb3pDOjXSLpmLufcPfLknZIum/QmPskvSVJ7v5LSZPMbGpGk+Ka+J8rDI5rGBzXcDi2\nuSedok1IOtlvu7P3e9cakxpiDAAANxwWQwEAEJC5+7UHmC2TVOPua3q3n5Xk7r6t35ifSdrt7u/0\nbrdL+j/ufnrQvq79wwAAyFHubqP5dxPSGLNP0mwzmynpd5IqJT00aMwHkp6Q9E5vMZ8fXLJjCQkA\nQFyNWLTu3mVm1ZI+VM+l5jfc/YiZPdLztr/m7jvNbJ2ZfS7pkqRNYWMDABAPI146BgAAoxdkMRQP\nuAhjpONqZhvM7EDva4+ZzY8iZxylc872jis3s8tmdn8288VVmr8LKsxsv5n9p5ntznbGOErjd8Ff\nmNkHvb9ff2VmGyOIGTtm9oaZnTazg9cYc/3d5e4ZfamnvD+XNFNSvqTPJJUMGrNW0s97v14qqTXT\nOcbbK83jukzSpN6v13BcM3ds+41rkfSvku6POneuv9I8ZydJOiQp0bs9Jercuf5K87g+J+nFr4+p\npLOSJkSdPddfklZIWijp4DDvj6q7QsxoecBFGCMeV3dvdfcLvZut4m+Z05XOOStJT0r6F0n/nc1w\nMZbOcd0g6V13T0mSu5/JcsY4Sue4uqRbe7++VdJZd7+SxYyx5O57JP3PNYaMqrtCFC0PuAgjnePa\n399IagqaaPwY8dia2XRJf+3ur0pi9Xx60jlniyVNNrPdZrbPzH6QtXTxlc5xrZU018xOSTog6W+z\nlG28G1V3pfPnPYgZM1upnpXfK6LOMo78RFL/e2GUbWZMkPRXku6RdIukvWa2190/jzZW7K2WtN/d\n7zGzWZL+zcwWuPsfow52IwpRtClJM/ptF/R+b/CYwhHGYKB0jqvMbIGk1yStcfdrXQLBn6VzbBdL\n2mFmpp57XmvN7LK7f5CljHGUznHtlHTG3f8k6U9m9rGkMvXcg8TQ0jmumyS9KEnuftzMfiOpRNIn\nWUk4fo2qu0JcOu57wIWZ3ayeB1wM/mX0gaSHpb4nTw35gAsMMOJxNbMZkt6V9AN3Px5Bxrga8di6\n+zd7X3ep5z7t45TsiNL5XdAoaYWZ5ZnZ/1bPApMjWc4ZN+kc1xOSvi1JvfcQiyX9V1ZTxpdp+CtW\no+qujM9onQdcBJHOcZX095ImS/qn3pnXZXdfEl3qeEjz2A74J1kPGUNp/i5oN7Ndkg5K6pL0mrsf\njjB2zkvzfP0HSW/2+zOVv3P3cxFFjg0z2y6pQtIdZtYhaYukmzXG7uKBFQAABMSn9wAAEBBFCwBA\nQBQtAAABUbQAAARE0QIAEBBFCwBAQBQtAAABUbQAAAT0/wHVzOOLYs8BFwAAAABJRU5ErkJggg==\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig = plt.figure()\n",
"\n",
"ax = fig.add_axes([0,0,1,1])\n",
"ax2 = fig.add_axes([0.2,0.5,.4,.4])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"** Now use x,y, and z arrays to recreate the plot below. Notice the xlimits and y limits on the inserted plot:**"
]
},
{
"cell_type": "code",
"execution_count": 51,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAfoAAAFQCAYAAABXkrzBAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xl4FFW+xvHvLwIqq8JIIkQJqCwCl0VQcM0g+4yAigg6\ngOtcF9QrMwMocxV1FNBRxHVUZFVE3KMiImIcUDEocEHZZUCCEER2WUPO/eM0GCBASLpTvbyf5+mH\n7kpV59dl2W/OqVOnzDmHiIiIxKekoAsQERGRyFHQi4iIxDEFvYiISBxT0IuIiMQxBb2IiEgcU9CL\niIjEsYgGvZm9bGY5ZjYv37KTzWyKmS02s4/NrFK+n91jZkvNbKGZtc23vKmZzTOzJWb2ZL7lZcxs\nQmibr8zs9Eh+HhERkVgT6Rb9KKDdQcsGAFOdc3WAacA9AGZ2NtANqAd0AJ4zMwtt8zxwo3OuNlDb\nzPa9543ABufcWcCTwKOR/DAiIiKxJqJB75ybAWw8aHFnYEzo+RigS+h5J2CCcy7XObcCWAqca2Yp\nQAXn3KzQemPzbZP/vd4ELg37hxAREYlhQZyjr+qcywFwzq0FqoaWVwdW5VtvdWhZdSA73/Ls0LID\ntnHO7QU2mVnlyJUuIiISW6JhMF445+C1o68iIiKSOEoF8DtzzCzZOZcT6pZfF1q+Gjgt33qpoWWH\nW55/m5/M7DigonNuQ0G/1Mw0qb+IiMQk51yRG7Il0aI3DmxpZwDXhZ73Bt7Lt7x7aCR9TeBMICvU\nvb/ZzM4NDc7rddA2vUPPr8IP7jss55weYX7cf//9gdcQrw/tW+3XWHto30bmUVwRbdGb2XggHahi\nZj8C9wNDgDfM7AZgJX6kPc65BWY2EVgA7AFuc799wtuB0cAJwCTn3OTQ8peBcWa2FPgF6B7JzyMi\nIhJrIhr0zrlrDvOj1odZfzAwuIDl3wINC1i+i9AfCiIiInKoaBiMJzEsPT096BLilvZtZGi/Ro72\nbfHt3Bn+97Rw9P/HAjNzifJZRUQk9uzYAS1bwr/+BS1a/LbczHBRPhhPREREjqJPHzj7bDjvvPC+\nbxCX14mIiEg+o0fDl1/CrFlgYZ4RRl33IiIiAZo/H1q1gsxMqF//0J+r615ERCRGbdkCXbvCE08U\nHPLhoBa9iIhIAJyDHj2gYkV48cXDr1fcFr3O0YuIiATgmWdg8WL46qvI/h616EVERErYzJnQqZP/\nt1atI6+rc/QiIiIx5OefoVs3GDHi6CEfDmrRi4iIlJC9e6FDB2jaFIYMKdw2atGLiIjEiAcfhD17\n4B//KLnfqcF4IiIiJWDyZHj5ZfjmGyhVgumrFr1IhEycOJEKFSpQsWJFKlasyAknnECrVq3YsmUL\nvXr1omrVqtSsWZOHH354/zbOOf7xj3+QlpZGSkoK1113HVu2bAFg5cqVJCUlMXr0aE4//XSqVKnC\nCy+8wDfffEOjRo2oXLkyd9xxR1AfV0SOYMUK6N0bXnsNUlJK9ncr6EUipFu3bmzdupUtW7awevVq\nzjjjDHr06MEdd9zB1q1bWbFiBZmZmYwdO5ZRo0YBMGrUKMaOHcvnn3/O8uXL2bp1K3369DngfbOy\nsli2bBmvv/46//M//8MjjzzCtGnT+O6775g4cSLTp08P4uOKyGHs3OknxRkwAC66qOR/vwbjiUSY\nc47LLruMtLQ0nnrqKU488UTmzZtHnTp1AHjxxReZMGEC06ZNo3Xr1nTt2pVbbrkFgCVLltCgQQN2\n7tzJqlWrqFWrFqtXryYl1CT43e9+x/PPP89VV10FQNeuXbn44ou58847g/mwInKIm2/2M+BNmFC0\neew1YY5IlLv33nv59ddfGT58OOvXryc3N5fTTz99/89r1KjB6tWrAfjpp5+oUaPGAT/Lzc0lJydn\n/7KqVavuf37iiSeSnJx8wOtt27ZF8uOIyDEYORJmzICsrPDfrKaw1HUvEkETJkzg9ddf56233uK4\n447jd7/7HaVLl2blypX711m5ciXVq1cHoFq1aof8rHTp0geEuYjEhtmzoX9/ePttqFAhuDoU9CIR\nMmfOHO68807effddKleuDEBSUhLdunVj4MCBbNu2jZUrVzJs2DB69uwJQI8ePRg2bBgrVqxg27Zt\nDBw4kO7du5OU5P9X1eknkdiwYYM/L//ss1CvXrC1qOteJEIyMjLYtGkTF154Ic45zIyLLrqI8ePH\n06dPH2rVqsWJJ57In//8Z66//noAbrjhBtasWcPFF1/Mrl27aN++PU899dT+97SD+v6O9lpESt7e\nvXDNNXD55X4GvKBpMJ4AkJaWRqVKlUhKSqJ06dJkZWWxceNGrr76alauXElaWhoTJ06kUqVKQZcq\nIhLV/vd/Yfp0mDo1PNfLa2Y8CYukpCQyMzOZM2cOWVlZAAwZMoTWrVuzePFiWrVqxeDBgwOuUkQk\numVkwOjR8PrrJTspzpEo6AXw537z8vIOWPbee+/Ru3dvAHr37s27774bRGkiIjFh6VK46SZ44w2I\npvGzCnoBfNdQmzZtaN68OSNGjAAgJydn/2jvlJQU1q1bF2SJIiJR69df4Yor4IEHoEWLoKs5UJR0\nLEjQvvjiC0499VR+/vln2rZtS506dTTQS0SkEJyDG26AZs0gNNdVVFHQCwCnnnoqAKeccgpdunQh\nKyuL5OTk/a36tWvXHjBRyz4Kf4lFGpgr4fT44/DDD35inGj8SlTXvbB9+/b9s6n9+uuvTJkyhYYN\nG9KpUydGjx4NwJgxY+jcuXOB2zvnYuZx//33B16Dag32IRJOn37qg/7tt+GEE4KupmBq0Qs5OTlc\nfvnlmBm5ublce+21tG3blmbNmtGtWzdGjhxJjRo1mDhxYtCliohEjZUr4dprYfx4yDerddRR0As1\na9Zk7ty5hyyvXLkyU6dODaAiEZHotmOHH3z3t79Bq1ZBV3Nk6rqXhJKenh50CYWmWkWik3N+0F3t\n2tC3b9DVHJ1mxpNiCc3YFHQZIoWmY1aKa/hwGDUKvvgCypWL/O/TbWpFRERKyGefweDB8NVXJRPy\n4aCuexERkUJYudLfrObVV6FmzaCrKTwFvYiIyFFs3+7vRve3v8GllwZdzbHROXopFp3vlFijY1aO\nlXPQs6d/Pm5cyU+Ko3P0IiIiEfT447Bwob/1bDTOfHc0CnoREZHD+PhjeOIJmDkTypYNupqiUdCL\niIgUYNky6NUL3nwzume+OxoNxhMRETnIli3QqRM8+CBcdFHQ1RSPBuNJsWhgk8QaHbNyNHl5fnrb\nU0+F558PuhoNxhMREQmr+++HX36BeLmPl4JeREQk5PXX/SV0WVlQpkzQ1YSHgl5ERASYPRv69IFP\nPoGqVYOuJnw0GE9ERBJeTo6f+e5f/4LGjYOuJrwU9CIiktB27fKD7667Dq68Muhqwk+j7qVYNIJZ\nYo2OWcnPObjxRti0yV8vnxSFzV+NuhcRESmiYcP8ufkZM6Iz5MNBQS8iIglp0iT45z/99Lblywdd\nTeQo6EVEJOEsWODPyb/7bmxPb1sYgXVUmNndZvadmc0zs1fNrIyZnWxmU8xssZl9bGaV8q1/j5kt\nNbOFZtY23/KmofdYYmZPBvNpYl9eXh5NmjShU6dOADzwwAOkpqbStGlTmjZtyuTJkwOuUEQkPH75\nxU9v+9hjcP75QVcTeYEEvZlVA+4Amjrn/gvfs9ADGABMdc7VAaYB94TWPxvoBtQDOgDPme2/WeDz\nwI3OudpAbTNrV6IfJk4MHz6c+vXrH7Csb9++zJ49m9mzZ9O+ffuAKhMRCZ89e+Cqq/wo+969g66m\nZAQ59OA4oJyZlQJOBFYDnYExoZ+PAbqEnncCJjjncp1zK4ClwLlmlgJUcM7NCq03Nt82UkjZ2dlM\nmjSJm2666YDlGpksIvHEObj9dn8+fvDgoKspOYEEvXPuJ+Bx4Ed8wG92zk0Fkp1zOaF11gL75iaq\nDqzK9xarQ8uqA9n5lmeHlskxuPvuu3nsscf4rZPEe+aZZ2jcuDE33XQTmzdvDqg6EZHwePJJ+Ppr\nePVVOO64oKspOYEMxjOzk/Ct9xrAZuANM7sWOLgJGdYm5aBBg/Y/T09PJz09PZxvH5M+/PBDkpOT\nady4MZmZmfuX33bbbdx3332YGX//+9/p27cvL7/8coHvof0q0SwzM/OAY1sS04cf+nPyX30FFSoE\nXc2RhfuYDWTCHDPrCrRzzt0cet0TaAG0AtKdczmhbvnPnHP1zGwA4JxzQ0PrTwbuB1buWye0vDtw\niXPu1gJ+pybMKcC9997LK6+8QqlSpdixYwdbt27liiuuYOzYsfvXWblyJZdddhnz5s07ZHtNPiKx\nRsds4vnuO2jVCt57D1q2DLqaY1fcCXOCOkf/I9DCzE4IDaq7FFgAZADXhdbpDbwXep4BdA+NzK8J\nnAlkhbr3N5vZuaH36ZVvGymERx55hB9//JHly5czYcIEWrVqxdixY1m7du3+dd5++20aNGgQYJUi\nIkWzbh1cdpmfGCcWQz4cAum6d85lmdmbwBxgT+jfF4EKwEQzuwHfWu8WWn+BmU3E/zGwB7gtX/P8\ndmA0cAIwyTmn68DCoF+/fsydO5ekpCTS0tJ44YUXgi5JROSY7NwJXbrAn/4E114bdDXB0Vz3Uizq\nBpVYo2M2MTjnw33vXnjttdie3lZz3YuIHEVeHvz0EyxfHnQlUlIefND/9/7ss9gO+XBQ0ItIXNi2\nDf7zH/jhB/8Fn/+xciWcfDLUqhV0lVISXnsNRo3yl9KdeGLQ1QRPXfdSLOoGlZKyr1VeUJAvXw5b\nt0LNmj7MzzjD/7vvkZYGZcv699ExG9+++go6d4ZPP4WGDYOuJjyK23WvoJdi0ZemhFNhW+UFhXlK\nClghvgp1zMav5cvhggtg5Ejo0CHoasJHQV9ICvrI0JemHItjaZUfHOb5W+XFoWM2Pm3c6C+fu/NO\nuO22oKsJLwV9ISnoI0NfmnKwkmiVF4eO2fizeze0awdNmsATTwRdTfgp6AtJQR8Z+tJMPNHQKi8O\nHbPxxTm44QbYsAHefjs+57DX5XUiEnZHapWvWAGVKx/YEm/fvmRb5SL7PPIIzJsH//53fIZ8OCjo\nRRLQsbbKzzrrtzCPhla5CPi70L34oh9pX65c0NVEL3XdS7GoGzR6HWurPH83e3Jy/E4yomM2Pnz+\nOVx1VXxdRnc4OkdfSAr6yNCXZnCOtVWeP8wTuVWuYzb2LV4MF1/sW/StWwddTeQp6AtJQR8Z+tKM\nLLXKw0/HbGxbt85fRjdwoB+ElwgU9IWkoI8MfWkWT1Fb5bVq+eWJ2iovDh2zsWv7dn9f+TZt4KGH\ngq6m5CjoC0lBHxn60jy6orTK97XM1SoPPx2zsWnvXuja1Q+6Gzcusa7sUNAXkoI+MvSlqVZ5rNEx\nG3ucg7vugu++g8mToUyZoCsqWbqOXqQEHGurvF07tcpFwmXYMJg2DWbMSLyQDwe16KVY4qV1pFZ5\n4oiXYzZRvPEG9O0LX34Jp50WdDXBUNd9ISnoIyOWvjR1rlwgto7ZRDdjBlxxBUyZAo0bB11NcBT0\nhaSgj4xo+tJUq1wKI5qOWTm8hQshPd0PvGvbNuhqgqWgLyQFfWSU9JemWuVSXAr66PfTT3D++fDg\ng9CrV9DVBE9BX0gK+iPLy8ujWbNmpKamkpGRwcaNG7n66qtZuXIlaWlpTJw4kUqVKh2yXbi/NNUq\nl0hT0Ee3LVv8rHfdusG99wZdTXRQ0BeSgv7Ihg0bxrfffsuWLVvIyMigf//+VKlShX79+jF06FA2\nbtzIkCFDDtmuKF+aapVLkBT00Wv3bujY0d9E6bnnEuta+SNR0BdSvAZ9x44dee6550hLSyvye2Rn\nZ3P99dczcOBAnnjiCTIyMqhbty6ff/45ycnJrF27lvT0dBYtWnTItgV9aapVLtFMQR+d8vKgd2/f\noo/X+8oXla6jT3DXX389bdu2pXfv3vTr14/SpUsf83vcfffdPPbYY2zevHn/spycHJKTkwFISUlh\n3bp1h93+iSd0XbmIFM+AAb5xMHWqQj7cFPQx7qqrrqJDhw489NBDNGvWjJ49e5KUL0X79u17xO0/\n/PBDkpOTady4MZmZmYddz47Qh/b664M4+WQ4+WTo3z+dq69OV6tcokZmZuYRj20J3rBh8P77/nI6\nfXeEn4I+DpQpU4Zy5cqxa9cutm7dekDQH80XX3xBRkYGkyZNYseOHWzdupWePXuSkpKyv1W/du1a\nqlatetj3+PrrQWH4FCKRkZ6eTnp6+v7XDzzwQHDFyCEmTPC9gjNmQJUqQVcTn3SOPsZNnjyZvn37\n0qlTJ+677z7KFuPP4c8//5zHH3+cjIwM+vXrR5UqVejfv3/YB+OJBEnHbPSYNg26d4dPP4WGDYOu\nJnrpHH2Ce/jhh3njjTeoX79+WN93wIABdOvWjZEjR1KjRg0mTpwY1vcXkcQ2Z44P+TfeUMhHmlr0\nUixqHUms0TEbvGXL/LXyzzzjp7iVIytui15jn0VEpMSsXeuvwhk0SCFfUhT0IiJSIjZvhg4d4Lrr\n4M9/DrqaxKGueykWdYNKrNExG4ydO33I168PTz+tWe+OhWbGKyQFfWToS1NijY7Zkpeb6+euL10a\nxo/XhDjHSqPuRUQkajkHt9zi73HxwQcK+SAo6EVEJGLuuQfmz/fXypcpE3Q1iUlBLyIiEfHPf0JG\nBkyfDuXLB11N4lLQi4hI2I0e7QfdaWrb4CnoRUQkrN5+23fZf/YZnHZa0NWIgl5ERMJm6lQ/+G7y\nZKhbN+hqBDRhjoiIhMnMmXDNNfDmm9C0adDVyD4KehERKbb586FzZ39u/uKLg65G8lPQi4hIsSxb\n5me9e/JJ6Ngx6GrkYAp6EREpsuxsaNMG7rsPevQIuhopiIJeRESKZN06H/K3366b1EQzBb2IiByz\nTZv87Wa7doW//jXoauRIdFMbKRbdIERijY7Z4vv1V2jbFs45B4YP153oIk13ryskBX1k6EtTYo2O\n2eLZuRMuuwxSU+HllyFJ/cIRp6AvJAV9ZOhLU2KNjtmi27MHrrgCypWDV1/VnehKSnGDPrC/xcys\nkpm9YWYLzex7MzvPzE42sylmttjMPjazSvnWv8fMlobWb5tveVMzm2dmS8zsyWA+TezatWsX5513\nHk2aNKFhw4Y88MADADzwwAOkpqbStGlTmjZtyuTJkwOuVESCtHcv/OlPvpt+3DiFfCwJrEVvZqOB\nz51zo8ysFFAOuBf4xTn3qJn1B052zg0ws7OBV4HmQCowFTjLOefM7Gugj3NulplNAoY75z4u4Pep\nRX8Y27dvp2zZsuzdu5cLLriAp556io8++ogKFSrQt2/fI26r1pHEGh2zxy4vD268EVav9nejO+GE\noCtKLDHZojezisBFzrlRAM65XOfcZqAzMCa02higS+h5J2BCaL0VwFLgXDNLASo452aF1hubbxsp\npLJlywK+dZ+bm4uFRtboy1BEnIM77vCT4rzzjkI+FgXVdV8TWG9mo8xstpm9aGZlgWTnXA6Ac24t\nUDW0fnVgVb7tV4eWVQey8y3PDi2TY5CXl0eTJk1ISUmhTZs2NG/eHIBnnnmGxo0bc9NNN7F58+aA\nqxSRkuYc/OUv8M038OGH/ty8xJ6ggr4U0BR41jnXFPgVGAAc3IRUk7IEJCUlMWfOHLKzs8nKymLB\nggXcdtttLF++nLlz55KSknLULnwRiS/OwcCB/lazkydDxYpBVyRFFdRtarOBVc65b0Kv38IHfY6Z\nJTvnckLd8utCP18N5L+rcWpo2eGWF2jQoEH7n6enp5Oenl68TxFnKlasSHp6OpMnTz4g2G+++WYu\nu+yyw26n/SrRLDMzk8zMzKDLiDn/+Ic/H5+ZCSefHHQ1iSXcx2yQg/E+B252zi0xs/uBsqEfbXDO\nDT3MYLzz8F3zn/DbYLyZwJ3ALOBD4Cnn3CFDxDUYr2Dr16+ndOnSVKpUiR07dtCuXTsGDBhA06ZN\nSUlJAWDYsGHMmjWL8ePHH7K9BjZJrNExe3SPPuqvkf/8cwh9DUiAijsYL6gWPfhwftXMSgPLgeuB\n44CJZnYDsBLoBuCcW2BmE4EFwB7gtnypfTswGjgBmFRQyMvhrVmzht69e5OXl0deXh5XX301HTt2\npFevXsydO5ekpCTS0tJ44YUXgi5VRErAsGHwwgsK+XiiCXOkWNQ6klijY/bwnn0W/vlPH/Knnx50\nNbJPLLfoRUQkSrz4ou+yV8jHHwW9iEiCGznSD7777DNISwu6Ggk3Bb2ISAIbMwbuuw+mTYMzzgi6\nGokEBb2ISIIaNw7uvRc+/RRq1w66GokU3WBQRCQBvfIKDBgAU6dC3bpBVyORpBa9iEiCefVV6NfP\nh3y9ekFXI5GmFr2ISAIZPx7+9jcf8mefHXQ1UhIU9CIiCeKVV+Cvf4VPPlHIJxIFvYhIAhg3Dvr3\n9y35+vWDrkZKkoJeRCTOjRnz28A7teQTj4JeRCSOjR7tbzf76acaeJeoFPQiInFqxAj4+999yOsS\nusSly+tEROLQ88/D4MF+Wtuzzgq6GgmSgl5EJM48/TQ8/jhkZkKtWkFXI0FT0IuIxJEnnoBnnvEh\nrxvUCCjoRUTixuDB8PLL/lazp50WdDUSLRT0IiIxzjkYNAgmToR//xuqVQu6IokmCnoRkRjmnJ8I\nZ/Jk35KvWjXoiiTaKOhFRGKUc3DXXfDll350fZUqQVck0UhBLyISg/buhVtvhfnz/Yx3J50UdEUS\nrTRhToLbtWsX5513Hk2aNKFhw4Y88MADAGzcuJG2bdtSp04d2rVrx+bNmwOuVET22bMHevWCpUth\nyhSFvByZgj7BHX/88Xz22WfMmTOHuXPn8tFHH5GVlcWQIUNo3bo1ixcvplWrVgwePDjoUsMiMzMz\n6BIKTbVKQXbtgm7dYNMmmDQJKlQIuiKJdgp6oWzZsoBv3efm5mJmvPfee/Tu3RuA3r178+677wZZ\nYtjEUiCpVjnY9u3QuTMcdxy88w6ceGLQFUksOGLQm1m7I/zsqvCXI0HIy8ujSZMmpKSk0KZNG5o3\nb05OTg7JyckApKSksG7duoCrFElsW7ZAhw5+VP2ECVCmTNAVSaw4Wot+kpl9ZmbVC/jZPZEoSEpe\nUlISc+bMITs7m6ysLL7//nvM7IB1Dn4tIiVn/Xpo1QoaNPB3oyulYdRyDMw5d/gfms0BngPuA+52\nzr2Z/2fOuSaRLzE8zMwd6bOK99BDD1G2bFlGjBhBZmYmycnJrF27lt///vcsXLjwkPX1B4DEolj6\nLli9Gtq0gS5d4OGHQf/LJR4zwzlX5P/yR2vRO+fcS8ClQH8zG2VmZff9rKi/VKLH+vXr94+o37Fj\nB5988gn16tWjU6dOjB49GoAxY8bQuXPnArd3zumhR8w9YsXy5XDRRdC7NzzyiEJeiqZQHUDOuSVm\n1hL4BzDHzHpFtiwpKWvWrKF3797k5eWRl5fH1VdfTceOHWnRogXdunVj5MiR1KhRg4kTJwZdqkhC\n+e47aN/e30/+lluCrkZi2VG77t1B3fNmlg6MBE5xzsXMhR3quheRWPHVV76r/sknoUePoKuRoEW6\n6/6Bgxc45zKBc4CHi/pLJfplZ2fTqlUr6tevT8OGDXnqqaeAwk+kM3nyZOrWrUvt2rUZOnRoVNea\nlpZGo0aNaNKkCeeee24gtb755ps0aNCA4447jtmzZx92+5Lcr+GoN8h9+/TTTwPQr18/6tWrR+PG\njbnyyivZsmVLgduX9L49nClToFMnGDVKIS9hEvS5shI8J+ek8NasWePmzJnjnHNu69atrnbt2m7h\nwoWuX79+bujQoc4554YMGeL69+9/yLZ79+51Z5xxhluxYoXbvXu3a9SokVu4cGFU1uqcczVr1nQb\nNmyIWH2FqXXRokVuyZIl7ve//7379ttvC9y2pPdrcet1Ljr27SeffOL27t3rnHOuf//+bsCAAYds\nG8S+LcjEic5Vrerc9Okl/qslioXyq8j5pwlzpEApKSk0btwYgPLly1OvXj2ys7MLNZFOVlYWZ511\nFjVq1KB06dJ0796d9957LyprBf/Hbl5eXsTqO1qtq1evpk6dOpx11llHHChW0vu1uPVCdOzb1q1b\nk5Tkv+patGhBdnb2IdsGsW8P9uKL8D//41v0F15Yor9a4pyCXo5qxYoVzJ07lxYtWhRqIp3Vq1dz\n2mmn7X+dmprK6tWro7JW8Oe/9k0U9NJLL5VInflrPe+88wq1fpD7FY69Xoi+fTty5Eg6dOhwyPpB\n7lvn4KGHYOhQf5vZRo1K5NdKAtG0C3JE27Zto2vXrgwfPpzy5ctH9UQ6Ra31iy++4NRTT+Xnn3+m\nTZs21KtXjwsj3KQ6uNZoV9R6o2nfPvzww5QuXZprrrkmor//WOTl+dvMTp8OM2bAqacGXZHEI7Xo\n5bByc3Pp2rUrPXv23H8dfXJyMjk5OQCsXbuWqlWrHrJd9erV+fHHH/e/zs7Opnr1giZXDL5WgFND\n366nnHIKl19+OVlZWSVea2EEsV+h6PVC9Ozb0aNHM2nSJMaPH1/gdkHs29274dprYd48yMxUyEvk\nKOjlsG644QbOPvts7rrrrv3LCjORTvPmzVm2bBkrV65k9+7dTJgwgU6dOkVlrdu3b2fbtm0A/Prr\nr0yZMoUGDRqUeK35He68dxD7FYpeb7Ts28mTJ/PYY4+RkZHB8ccfX+B2Jb1vt26FP/4RduyAyZN1\nm1mJsOKM5IulBxp1f0xmzJjhkpKSXKNGjVzjxo1dkyZN3EcffeR++eUXd+mll7ratWu7Nm3auI0b\nNzrnnPvpp5/cH/7wh/3bf/TRR6527druzDPPdIMHD47aWpcvX75/uwYNGgRW6zvvvONSU1PdCSec\n4FJSUlz79u0PqdW5kt2vxa03GvbtpEmT3JlnnulOP/1016RJE9ekSRN36623HlKrcyW3b9eude6c\nc5y7+Wbn9uyJ2K+ROEIxR90fccKceKIJc0QkaD/8AO3awZ/+BPffryltpXAiPWGOiIiEwezZft76\nv/4VBg1r9aaEAAAWOElEQVRSyEvJ0ah7EZEImzLFt+JfeAEuvzzoaiTRqEUvIhJBo0dDr17wzjsK\neQmGWvQiIhHgnL+17IgR/vK5unWDrkgSlYJeRCTMcnOhTx/IyoIvv9Q18hIsBb2ISBht2wbdu8Oe\nPX5K2woxczNviVc6Ry8SRbKzs6lVqxabNm0C/K12a9WqdcCsbRK91q6FSy6B5GT44AOFvEQHBb1I\nFElNTeW2226jf//+AAwYMIBbbrmF008/PeDK5GgWLICWLaFLF39evnTpoCsS8TRhjkiUyc3NpVmz\nZlx//fWMGDGCuXPnctxxxwVdlhzB559Dt27w2GN+hL1IOBV3whydoxeJMqVKleLRRx+lffv2TJ06\nVSEf5caN85PgjB8Pl14adDUih1LXvUgUmjRpEtWqVWP+/PlBlyKH4Zyfxva+++CzzxTyEr0CDXoz\nSzKz2WaWEXp9splNMbPFZvaxmVXKt+49ZrbUzBaaWdt8y5ua2TwzW2JmTwbxOUTCae7cuXz66afM\nnDmTJ554Yv+tdiV67NoFPXv6O8/NnAlnnx10RSKHF3SL/i5gQb7XA4Cpzrk6wDTgHgAzOxvoBtQD\nOgDPme2fKfp54EbnXG2gtpm1K6niRSLhtttuY/jw4aSmptKvXz/+8pe/BF2S5LN+PbRpAzt3+pZ8\ncnLQFYkcWWBBb2apQEdgRL7FnYExoedjgC6h552ACc65XOfcCmApcK6ZpQAVnHOzQuuNzbeNSMx5\n6aWXqFGjBq1atQLg1ltvZdGiRUyfPj3gygRg8WJo0cKPrp84EcqWDboikaMLcjDeMOBvQKV8y5Kd\nczkAzrm1ZlY1tLw68FW+9VaHluUC2fmWZ4eWi8Skm2++mZtvvnn/66SkJL755psAK5J9pk2DHj1g\n8GC44YagqxEpvEBa9Gb2ByDHOTcXONIlA7oeTkQCN2KED/nXX1fIS+wJqkV/AdDJzDoCJwIVzGwc\nsNbMkp1zOaFu+XWh9VcDp+XbPjW07HDLCzRo0KD9z9PT00lPTy/+JxGRuLV3L/TrB++/D9OnQ+3a\nQVckiSAzM5PMzMywvV/gE+aY2SXAX5xznczsUeAX59xQM+sPnOycGxAajPcqcB6+a/4T4CznnDOz\nmcCdwCzgQ+Ap59zkAn6PJswRkULbssW34nft8ufjK1cOuiJJVMWdMCfoUfcHGwK0MbPFwKWh1zjn\nFgAT8SP0JwG35Uvt24GXgSXA0oJCXkTkWCxfDuefDzVqwEcfKeQltgXeoi8patGLSGFMn+6ns/37\n3+H224OuRiT+WvQiIoF56SXo2hXGjFHIS/zQXPcikvD27IG+fWHqVJgxA846K+iKRMJHQS8iCe2X\nX+Cqq+DEE/10tpUqHX0bkViirnsRSVjz58O550Lz5pCRoZCX+KQWvYgkpLfegltugSefhGuvDboa\nkchR0ItIQsnL87eWHTfO333unHOCrkgkshT0IpIwNm/2rfetW2HWLKha9ejbiMQ6naMXkYSwYIE/\nF5+W5kfXK+QlUSjoRSTuvfkmXHIJ3HsvPPMMlC4ddEUiJUdd9yISt/buhYED4bXX/FS2zZoFXZFI\nyVPQi0hcWr8errkGcnPhm2/glFOCrkgkGOq6F5G4k5XlR9M3aQJTpijkJbGpRS8iccM5P1/9wIHw\nwgtwxRVBVyQSPAW9iMSFHTv8jWi+/trPV1+nTtAViUQHdd2LSMxbtgxatPBh//XXCnmR/BT0IhLT\n3nkHzj8f/vu/Yfx4KF8+6IpEoou67kUkJu3ZA/fc46+R/+ADf3MaETmUgl5EYs6qVdC9O5x0Enz7\nLVSpEnRFItFLXfciElMmTfJT2XbqBO+/r5AXORq16EUkJuTmwt//Dq++6rvrL7ww6IpEYoOCXkSi\n3qpVfpa7cuVg9mxNgCNyLNR1LyJR7f33/Rz1f/iD77ZXyIscG7XoRSQq7d4N/fv7y+f2XUInIsdO\nQS8iUWfZMujRA6pX9131lSsHXZFI7FLXvYhElVdegZYtoVcv35JXyIsUj1r0IhIVtm71c9XPmgVT\np0KjRkFXJBIf1KIXkcDNmgVNm8Lxx/t7xyvkRcJHLXoRCczevTB0KDz5JDz7LFx1VdAVicQfBb2I\nBOLHH6FnTzDz09iedlrQFYnEJ3Xdi0iJe/11f218hw7w6acKeZFIUoteRErMpk3Qp48/Jz9pkg97\nEYkstehFpERkZvpBdhUr+mvjFfIiJUMtehGJqF274H//118fP2IEdOwYdEUiiUVBLyIRM3euH3B3\n1lnwf/+neepFgqCuexEJu9xcePhhaNsW+vWDt95SyIsERS16EQmrxYvhuuv8LWV12ZxI8NSiF5Gw\n2LsXhg2DCy6Aa6+FKVMU8iLRQC16ESm2Zcvg+uv985kz4cwzg61HRH6jFr2IFFleHjz9NLRoAVde\n6S+hU8iLRBe16EWkSJYuhRtv9F32X3wBdeoEXZGIFEQtehE5Jnv3whNP+HvGX3kl/PvfCnmRaKYW\nvYgU2oIFcNNNULq0zsWLxAq16EXkqHbvhgcfhIsv9hPgfPaZQl4kVqhFLyJHlJXlz8XXqAFz5uiS\nOZFYoxa9iBRo2za4+27o1AnuuQfef18hLxKLFPQicogPP4T69WHDBvjuO7jmGjALuioRKQp13YvI\nfmvXwl13+alrX34ZWrcOuiIRKS616EWEvDx4/nlo2BBq1YL58xXyIvFCLXqRBDd3LtxyC5Qq5UfT\nN2gQdEUiEk6BtOjNLNXMppnZ92Y238zuDC0/2cymmNliM/vYzCrl2+YeM1tqZgvNrG2+5U3NbJ6Z\nLTGzJ4P4PCKxaOtW+MtfoF07uPlmP/GNQl4k/gTVdZ8L9HXO1QdaArebWV1gADDVOVcHmAbcA2Bm\nZwPdgHpAB+A5s/1Dg54HbnTO1QZqm1m7kv0oIrHFOZg4EerV+22w3Y03QpJO5InEpUC67p1za4G1\noefbzGwhkAp0Bi4JrTYGyMSHfydggnMuF1hhZkuBc81sJVDBOTcrtM1YoAvwcUl9FpFYsngx9OkD\nOTkwYQJceGHQFYlIpAX+N7yZpQGNgZlAsnMuB/b/MVA1tFp1YFW+zVaHllUHsvMtzw4tE5F8tm3z\n18JfcAF07AizZyvkRRJFoIPxzKw88CZwV6hl7w5a5eDXxTJo0KD9z9PT00lPTw/n24tEnX3d9H/9\nK6Snw7x5UK1a0FWJyJFkZmaSmZkZtvcz58KapYX/xWalgA+Aj5xzw0PLFgLpzrkcM0sBPnPO1TOz\nAYBzzg0NrTcZuB9YuW+d0PLuwCXOuVsL+H0uqM8qEoTvvoM77/Tn4Z9+Gi66KOiKRKQozAznXJGn\nrAqy634ksGBfyIdkANeFnvcG3su3vLuZlTGzmsCZQFaoe3+zmZ0bGpzXK982IglpwwZ/Hr5VK38b\n2W++UciLJLKgLq+7ALgWaGVmc8xstpm1B4YCbcxsMXApMATAObcAmAgsACYBt+Vrnt8OvAwsAZY6\n5yaX7KcRiQ65ufDss1C3rn+9cCHcfru/Pl5EEldgXfclTV33Es8+/thfE1+1Kgwf7me4E5H4UNyu\ne/2tLxLDFi70Ab90KTz2GHTurJvPiMiBAr+8TkSO3fr1cMcdcPHFfk7677+HLl0U8iJyKAW9SAzZ\nuROGDvWz2oFv0fftC2XKBFuXiEQvdd2LxIC8PHjtNbj3XjjnHPjiC6hdO+iqRCQWKOhFotwnn0D/\n/lC6NLz6qma0E5Fjo6AXiVKzZ8OAAbBiBQweDFdcoXPwInLsdI5eJMosXQo9esAf/+jD/fvv/cQ3\nCnkRKQoFvUiUyM6GP/8ZWrb094VfsgRuucV32YuIFJWCXiRgP//sbzrTqBFUruwDfuBAKF8+6MpE\nJB4o6EUCsnGjD/S6dWH7dpg/H4YM8WEvIhIuCnqRErZlCzz0EJx1FuTk+EF3zz2n28eKSGQo6EVK\nyJYt8PDDcMYZvnt+5kwYMQJq1Ai6MhGJZwp6kQjLH/CLFsGMGTBuHJx5ZtCViUgi0HX0IhGycSM8\n9RQ88wy0a+cDvk6doKsSkUSjFr1ImP38s5+q9swz4ccf4csv4ZVXFPIiEgwFvUiYrFoFd93lA33j\nRvj2W3j5ZT/oTkQkKAp6kWJatAiuv95fB1+6NHz3HTz/PKSlBV2ZiIjO0YsU2cyZ8NhjMH069OkD\ny5bpGngRiT4KepFjkJcHkybBo4/6rvq+fWHsWChXLujKREQKpqAXKYQdO/yAumHD4IQToF8/6NoV\nSun/IBGJcvqaEjmCdev8rHXPPw/Nm8Ozz0J6uu4kJyKxQ4PxRAowd64fYFenDqxZA59/Dh98AL//\nvUJeRGKLWvQiIbm5kJEBw4fDDz/A7bf7e8P/7ndBVyYiUnQKekl469b5Oef/9S9ITfXXwl9xhe4D\nLyLxQV33kpCc85fH9ewJtWv7Fvy77/pZ7K6+WiEvIvHDnHNB11AizMwlymeVw9u6FV591bfet22D\n//5vuOEGqFIl6MpERApmZjjnijw6SEEvCeHbb+Gll+D116FVK7jlFrj0UkhSn5aIRLniBr3O0Uvc\n2rzZt95HjPBzz994I3z/PVSrFnRlIiIlRy16iSt5ef5SuFGj/Aj6tm3hppugdWu13kUkNqnrvpAU\n9PFtxQo/Fe3o0VChgr8G/tpr4ZRTgq5MRKR41HUvCWvLFnjzTR/w33/vR8u/+SY0aaJJbURE9lGL\nXmLK7t0wZYo/9/7RR35gXa9e0LEjlCkTdHUiIuGnrvtCUtDHrrw8+OILGD/et9jr1oVrroFu3XRZ\nnIjEP3XdS1xyDr7+2l8O98YbcPLJ/pz7rFmQlhZ0dSIisUNBL1HDOcjK8q32N97wt4O9+mrfVX/2\n2UFXJyISmxT0Eqi9e/20s2+95R/ly/v7vL/3HvzXf2lQnYhIcSnopcTt3AlTp/q55TMy4NRT4cor\n4eOP1XIXEQk3DcaTErFuHXz4Ibz/Pnz6KTRuDF26+EfNmkFXJyISvTTqvpAU9CUrLw/mzPGXwH3w\nASxa5Gep++Mf/aVwuse7iEjhKOgLSUEfeevX+y75yZP946STfKh37AgXX6zr3EVEikJBX0gK+vDb\ntQu++go++cSPjF+yxAd6+/bQoQPUqhV0hSIisU9BX0gK+uLLzfXd8Z9+CtOm+ZCvV893ybdtCy1a\nqNUuIhJuCvpCUtAfu9xcmD0bMjP9HeG++AJSU/193Fu1gksu8d3zIiISOQr6QlLQH93WrTBzJsyY\n4UM9K8uPiL/kEv+4+GLdDU5EpKQp6AtJQX+gvDx/Tn3mTP/46itYtgzOOQcuvNA/Wrb0U8+KiEhw\nFPSFlMhB7xz8+CN8842fK37WLPj2W9/t3rKlP7fesiU0agTHHx90tSIikp+CvpASJehzc31L/f/+\nzw+cmz3b/1umDDRrBs2b+3+bNYOqVYOuVkREjkZBX0jxFvT7WukLFsD338N338G8eX5imtRUaNgQ\nmjb1jyZNICUl6IpFRKQoFPSAmbUHngSSgJedc0MLWCcmg/7XX+GHH2DxYv9YtOi3fytW9HPD16/v\nH40a+X/LlQu6ahERCZeED3ozSwKWAJcCPwGzgO7OuUUHrReVQZ+XB2vWwH/+AytW+H//8x8/MG7Z\nMti0yY98r1PnwEfdutExUC4zM5P09PSgy4hL2reRof0aOdq3kVHcoI+Hu9edCyx1zq0EMLMJQGdg\n0RG3KgG//gpr1/og/+mn3/5dteq3x5o1ULmyD/O0NP/v+edDr15w5plQrRokJQX9SQ5P/2NHjvZt\nZGi/Ro72bXSKh6CvDqzK9zobH/7F5hzs3g3btvlrzLduhc2bf3ts2gQbNsAvv/jHhg3w88/+Tm3r\n1vnWenIyVK/ub8VarZr/t2FDfx79tNP8z044IRzVioiIHCoegr7QOnb04ZuXB3v3wp49Bz527YId\nO/z90nfuhO3bfWu6fPnfHiedBJUq/fZv5co+sBs1gipV/F3ZkpP9iPZy5cCK3NkiIiJSfPFwjr4F\nMMg51z70egDgDh6QZ2ax/UFFRCRhJfpgvOOAxfjBeGuALKCHc25hoIWJiIhEgZjvunfO7TWzPsAU\nfru8TiEvIiJCHLToRURE5PCi+MKt8DGz9ma2yMyWmFn/oOuJVWaWambTzOx7M5tvZneGlp9sZlPM\nbLGZfWxmlYKuNRaZWZKZzTazjNBr7dcwMLNKZvaGmS0MHbvnad8Wn5ndbWbfmdk8M3vVzMpovxaN\nmb1sZjlmNi/fssPuSzO7x8yWho7ptkd7/7gP+tCEOs8A7YD6QA8zqxtsVTErF+jrnKsPtARuD+3L\nAcBU51wdYBpwT4A1xrK7gAX5Xmu/hsdwYJJzrh7QCD/HhvZtMZhZNeAOoKlz7r/wp4F7oP1aVKPw\nGZVfgfvSzM4GugH1gA7Ac2ZHvr4r7oOefBPqOOf2APsm1JFj5Jxb65ybG3q+DVgIpOL355jQamOA\nLsFUGLvMLBXoCIzIt1j7tZjMrCJwkXNuFIBzLtc5txnt23A4DihnZqWAE4HVaL8WiXNuBrDxoMWH\n25edgAmhY3kFsJSjzB2TCEFf0IQ61QOqJW6YWRrQGJgJJDvncsD/MQDovnjHbhjwNyD/oBnt1+Kr\nCaw3s1Gh0yIvmllZtG+LxTn3E/A48CM+4Dc756ai/RpOVQ+zLw/OtNUcJdMSIeglzMysPPAmcFeo\nZX/wiE6N8DwGZvYHICfUW3KkLjjt12NXCmgKPOucawr8iu8S1TFbDGZ2Er7FWQOohm/ZX4v2ayQV\neV8mQtCvBk7P9zo1tEyKINRN9yYwzjn3Xmhxjpklh36eAqwLqr4YdQHQycyWA68BrcxsHLBW+7XY\nsoFVzrlvQq/fwge/jtniaQ0sd85tcM7tBd4Bzkf7NZwOty9XA6flW++omZYIQT8LONPMaphZGaA7\nkBFwTbFsJLDAOTc837IM4LrQ897AewdvJIfnnLvXOXe6c64W/vic5pzrCbyP9muxhLo+V5lZ7dCi\nS4Hv0TFbXD8CLczshNBAsEvxA0m1X4vOOLBH73D7MgPoHrrKoSZwJn6iuMO/cSJcRx+6X/1wfptQ\nZ0jAJcUkM7sA+DcwH9+N5IB78QfZRPxfmSuBbs65TUHVGcvM7BLgL865TmZWGe3XYjOzRvhBjqWB\n5cD1+IFk2rfFYGb34/8w3QPMAW4CKqD9eszMbDyQDlQBcoD7gXeBNyhgX5rZPcCN+H1/l3NuyhHf\nPxGCXkREJFElQte9iIhIwlLQi4iIxDEFvYiISBxT0IuIiMQxBb2IiEgcU9CLiIjEMQW9iBRJ6LbF\ny0PToe67reZyMzv9aNuKSMlR0ItIkTjnsoHngKGhRUOAfznnfgyuKhE5mCbMEZEiC9374Bv8/bRv\nAhqH5j4XkShRKugCRCR2OedyzawfMBlorZAXiT7quheR4uoI/AQ0DLoQETmUgl5EiszMGuPvXNYC\n6LvvtpoiEj0U9CJSHM/h756VDTwKPB5wPSJyEAW9iBSJmd0MrHTOTQsteh6oa2YXBViWiBxEo+5F\nRETimFr0IiIicUxBLyIiEscU9CIiInFMQS8iIhLHFPQiIiJxTEEvIiISxxT0IiIicUxBLyIiEsf+\nH51ua+eImT++AAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"execution_count": 51,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"ax.plot(x,z)\n",
"ax.set_xlabel('X')\n",
"ax.set_ylabel('Z')\n",
"\n",
"\n",
"ax2.plot(x,y)\n",
"ax2.set_xlabel('X')\n",
"ax2.set_ylabel('Y')\n",
"ax2.set_title('zoom')\n",
"ax2.set_xlim(20,22)\n",
"ax2.set_ylim(30,50)\n",
"\n",
"fig"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Exercise 4\n",
"\n",
"** Use plt.subplots(nrows=1, ncols=2) to create the plot below.**"
]
},
{
"cell_type": "code",
"execution_count": 52,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAXkAAAEACAYAAABWLgY0AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAADqpJREFUeJzt3E+MnHd9x/H3x3FTqShESiNFxSGpFEApiIAQuD7kMCRV\ns8nFiAtOJCoiofrQIC5VHQ5V9lAp5YZoWiJXLhUH5ErQg0uhCUIZobQJGDWJQ2vHDq2M/6CgpBAJ\npFTG+vaw0zAM9u6zu88zY//m/ZJGmmfmt/N9xv7Mx88+z65TVUiS2rRj0TsgSRqOJS9JDbPkJalh\nlrwkNcySl6SGWfKS1LANSz7JoSSvJDm2zprPJzmV5Pkk7+93F6VhmG0tgy5H8l8E7rnck0nuBW6r\nqncC+4HHe9o3aWhmW83bsOSr6mngJ+ss2Qt8abL2O8D1SW7qZ/ek4ZhtLYM+zsnvAs5MbZ+bPCZd\n7cy2rnpeeJWkhu3s4TXOAW+f2r558tivSeJ/lKNBVVV6fDmzrSvGVrPd9Ug+k9ulHAH+CCDJHuCn\nVfXK5V6oqhZye+SRR5Zq7jK+5y26qrNtvpZj9nZseCSf5MvACPjtJD8EHgGuXct0Hayqrye5L8nL\nwM+BB7e1R9KcmG0tgw1Lvqoe6LDmoX52R5ofs61lsDQXXkej0VLNXeTsRb7nZWO+lmf2VmW753s2\nNSypec7TcklC9XvhdTOzzbYGs51sL82RvCQtI0tekhpmyUtSwyx5SWqYJS9JDbPkJalhlrwkNcyS\nl6SGWfKS1DBLXpIaZslLUsMseUlqmCUvSQ2z5CWpYZa8JDXMkpekhlnyktQwS16SGmbJS1LDLHlJ\napglL0kNs+QlqWGWvCQ1zJKXpIZZ8pLUMEtekhpmyUtSwyx5SWqYJS9JDbPkJalhlrwkNcySl6SG\nWfKS1DBLXpIa1qnkk6wkOZHkZJIDl3j+rUmOJHk+yYtJPtH7nko9M9daBqmq9RckO4CTwN3AeeAo\nsK+qTkyt+Qzw1qr6TJIbgZeAm6rqFzOvVRvNk7YqCVWVjmt7y/VkrdnWYDaT7VldjuR3A6eq6nRV\nXQAOA3tn1hRw3eT+dcBrl/ogSFcQc62l0KXkdwFnprbPTh6b9hjw7iTngReAT/eze9JgzLWWws6e\nXuce4LmquivJbcA3k9xRVT+bXbi6uvrm/dFoxGg06mkXtGzG4zHj8XjIEZ1zDWZb/ekz213Oye8B\nVqtqZbL9MFBV9dmpNV8DHq2qf51sfws4UFXfm3ktz1tqMJs8J99brifPmW0NZuhz8keBdyS5Ncm1\nwD7gyMya08AfTHbmJuBdwH9tZYekOTHXWgobnq6pqotJHgKeZO0fhUNVdTzJ/rWn6yDwF8DfJzk2\n+bI/q6r/GWyvpW0y11oWG56u6XWY39JqQNv5lraH2WZbgxn6dI0k6SplyUtSwyx5SWqYJS9JDbPk\nJalhlrwkNcySl6SGWfKS1DBLXpIaZslLUsMseUlqmCUvSQ2z5CWpYZa8JDXMkpekhlnyktQwS16S\nGmbJS1LDLHlJapglL0kNs+QlqWGWvCQ1zJKXpIZZ8pLUMEtekhpmyUtSwyx5SWqYJS9JDbPkJalh\nlrwkNcySl6SGWfKS1DBLXpIaZslLUsMseUlqWKeST7KS5ESSk0kOXGbNKMlzSb6f5Kl+d1Pqn7nW\nMkhVrb8g2QGcBO4GzgNHgX1VdWJqzfXAvwF/WFXnktxYVa9e4rVqo3nSViWhqtJxbW+5nqw12xrM\nZrI9q8uR/G7gVFWdrqoLwGFg78yaB4CvVtU5gMt9EKQriLnWUuhS8ruAM1PbZyePTXsXcEOSp5Ic\nTfLxvnZQGoi51lLY2ePrfAC4C3gL8EySZ6rq5Z5eX1oEc62rXpeSPwfcMrV98+SxaWeBV6vqDeCN\nJN8G3gf82odhdXX1zfuj0YjRaLS5PZYmxuMx4/F4q1/ea67BbKs/28z2r+hy4fUa4CXWLlD9CPgu\ncH9VHZ9aczvwV8AK8JvAd4CPVdV/zryWF6c0mE1eeO0t15O1ZluD2c6F1w2P5KvqYpKHgCdZO4d/\nqKqOJ9m/9nQdrKoTSZ4AjgEXgYOX+iBIVwpzrWWx4ZF8r8M82tGAtnO008Nss63BDP0jlJKkq5Ql\nL0kNs+QlqWGWvCQ1zJKXpIZZ8pLUMEtekhpmyUtSwyx5SWqYJS9JDbPkJalhlrwkNcySl6SGWfKS\n1DBLXpIaZslLUsMseUlqmCUvSQ2z5CWpYZa8JDXMkpekhlnyktQwS16SGmbJS1LDLHlJapglL0kN\ns+QlqWGWvCQ1zJKXpIZZ8pLUMEtekhpmyUtSwyx5SWqYJS9JDbPkJalhlrwkNaxTySdZSXIiyckk\nB9ZZ96EkF5J8tL9dlIZhrrUMNiz5JDuAx4B7gPcA9ye5/TLr/hJ4ou+dlPpmrrUsuhzJ7wZOVdXp\nqroAHAb2XmLdp4CvAD/ucf+koZhrLYUuJb8LODO1fXby2JuSvA34SFV9AUh/uycNxlxrKfR14fVz\nwPQ5TT8QaoG51lVvZ4c154BbprZvnjw27YPA4SQBbgTuTXKhqo7Mvtjq6uqb90ejEaPRaJO7LK0Z\nj8eMx+OtfnmvuQazrf5sM9u/IlW1/oLkGuAl4G7gR8B3gfur6vhl1n8R+Keq+sdLPFcbzZO2KglV\n1elou89cT5432xrMZrI9a8Mj+aq6mOQh4EnWTu8cqqrjSfavPV0HZ79kKzsizZO51rLY8Ei+12Ee\n7WhA2zna6WG22dZgtpNtf+NVkhpmyUtSwyx5SWqYJS9JDbPkJalhlrwkNcySl6SGWfKS1DBLXpIa\nZslLUsMseUlqmCUvSQ2z5CWpYZa8JDXMkpekhlnyktQwS16SGmbJS1LDLHlJapglL0kNs+QlqWGW\nvCQ1zJKXpIZZ8pLUMEtekhpmyUtSwyx5SWqYJS9JDbPkJalhlrwkNcySl6SGWfKS1DBLXpIaZslL\nUsMseUlqmCUvSQ3rVPJJVpKcSHIyyYFLPP9Akhcmt6eTvLf/XZX6Za61DFJV6y9IdgAngbuB88BR\nYF9VnZhaswc4XlWvJ1kBVqtqzyVeqzaaJ21VEqoqHdf2luvJWrOtwWwm27O6HMnvBk5V1emqugAc\nBvZOL6iqZ6vq9cnms8CureyMNEfmWkuhS8nvAs5MbZ9l/bB/EvjGdnZKmgNzraWws88XS/Jh4EHg\nzsutWV1dffP+aDRiNBr1uQtaIuPxmPF4PPicLrkGs63+9JntLufk97B2LnJlsv0wUFX12Zl1dwBf\nBVaq6geXeS3PW2owmzwn31uuJ+vMtgYz9Dn5o8A7ktya5FpgH3BkZgduYe2D8PH1PgjSFcRcayls\neLqmqi4meQh4krV/FA5V1fEk+9eeroPAnwM3AH+TJMCFqto95I5L22GutSw2PF3T6zC/pdWAtvMt\nbQ+zzbYGM/TpGknSVcqSl6SGWfKS1DBLXpIaZslLUsMseUlqmCUvSQ2z5CWpYZa8JDXMkpekhlny\nktQwS16SGmbJS1LDLHlJapglL0kNs+QlqWGWvCQ1zJKXpIZZ8pLUMEtekhpmyUtSwyx5SWqYJS9J\nDbPkJalhlrwkNcySl6SGWfKS1DBLXpIaZslLUsMseUlqmCUvSQ2z5CWpYZa8JDXMkpekhlnyktSw\nTiWfZCXJiSQnkxy4zJrPJzmV5Pkk7+93N6X+mWstgw1LPskO4DHgHuA9wP1Jbp9Zcy9wW1W9E9gP\nPD7Avm7LeDxeqrmLnL3I99yVub56Zy/je96OLkfyu4FTVXW6qi4Ah4G9M2v2Al8CqKrvANcnuanX\nPd0mA9n+3E0y11fp7GV8z9vRpeR3AWemts9OHltvzblLrJGuJOZaS8ELr5LUsqpa9wbsAf5lavth\n4MDMmseBj01tnwBuusRrlTdvQ942yvMQuTbb3uZx65rt2dtONnYUeEeSW4EfAfuA+2fWHAH+BPiH\nJHuAn1bVK7MvVFXpME+ah95yDWZbV64NS76qLiZ5CHiStdM7h6rqeJL9a0/Xwar6epL7krwM/Bx4\ncNjdlrbHXGtZZPKtpiSpQYNceF3UL5lsNDfJA0lemNyeTvLePuZ2mT217kNJLiT56LzmJhkleS7J\n95M81cfcLrOTvDXJkcnf8YtJPtHT3ENJXklybJ01c8/XUHO7zB4q24vKddfZQ2S7uVxv9WT+Ohe0\ndgAvA7cCvwE8D9w+s+Ze4J8n938feHZOc/cA10/ur/Qxt+vsqXXfAr4GfHRO7/l64D+AXZPtG+f4\n9/wZ4NH/nwu8BuzsYfadwPuBY5d5flH56n3uIrO9qFwvMtst5nqII/lF/ZLJhnOr6tmqen2y+Sz9\n/cxzl/cM8CngK8CP5zj3AeCrVXUOoKpenePsAq6b3L8OeK2qfrHdwVX1NPCTdZYsJF8Dze00e6Bs\nLyrXXWcPke3mcj1EyS/ql0y6zJ32SeAb25zZeXaStwEfqaovAH39JEaX9/wu4IYkTyU5muTjc5z9\nGPDuJOeBF4BP9zR7s/s2r3wN9ctTi8r2onLdaTbDZLu5XHf5EcrmJPkwaz8pceccx34OmD6/N68f\nudsJfAC4C3gL8EySZ6rq5TnMvgd4rqruSnIb8M0kd1TVz+YweyktINuLyjUsLttXVa6HKPlzwC1T\n2zdPHptd8/YN1gwxlyR3AAeBlapa71ujvmd/EDicJKydx7s3yYWqOjLw3LPAq1X1BvBGkm8D72Pt\nvON2dJn9IPAoQFX9IMl/A7cD39vm7C77toh8DTG36+whsr2oXHedPUS228t1HxdJZi4OXMMvL1xc\ny9qFi9+bWXMfv7yAsId+LhJ1mXsLcArYM+/3PLP+i/Rz4bXLe74d+OZk7W8BLwLvntPsvwYemdy/\nibVvNW/o6c/8d4EXL/PcovLV+9xFZntRuV5ktlvMdS9huMTOrAAvTUL38OSx/cAfT615bPKH+QLw\ngXnMBf6WtSvh/w48B3x3nu95au3f9fhh6PJn/aes/RTCMeBT83rPwO8AT0zmHgPu72nul4HzwP8C\nP2TtyGrh+Rpq7iKzvahcLzLbreXaX4aSpIb5v1BKUsMseUlqmCUvSQ2z5CWpYZa8JDXMkpekhlny\nktQwS16SGvZ/GNp0aN6HtcEAAAAASUVORK5CYII=\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"# Empty canvas of 1 by 2 subplots\n",
"fig, axes = plt.subplots(nrows=1, ncols=2)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"** Now plot (x,y) and (x,z) on the axes. Play around with the linewidth and style**"
]
},
{
"cell_type": "code",
"execution_count": 53,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEACAYAAABfxaZOAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3XecVNX9//HXhyaIiBgDCliwayyIiho1rKLYIsbEAlgB\ne8FEjYAaQWNUjH4VjRjBAliCoDFgiSDB1chPgShIFARsNGUNqGBBKfv5/XHucmdxV5bdmblT3s/H\ng4fn3r0z9zM+zn72zLmnmLsjIiLFoV7SAYiISPYo6YuIFBElfRGRIqKkLyJSRJT0RUSKiJK+iEgR\n2WDSN7O2ZjbJzN41s/+aWZ/ofAszm2Bmc8xsvJk1T3lNfzObZ2azzaxLJj+ACICZPWRmZWY2M+Xc\nRtdRM+tgZjPNbK6Z3Z1yvpGZjYpe87qZbZe9TyeSPjVp6a8BrnT3nwGHAJea2e5AP2Ciu+8GTAL6\nA5jZnsBpwB7AccAQM7NMBC+S4hHgmPXO1aaO3g/0dvddgV3NrOI9ewOfu/suwN3A7Zn8MCKZssGk\n7+5L3H1GVP4amA20BU4CRkSXjQB+FZW7AqPcfY27fwzMAzqmOW6RStz9NeCL9U5vVB01s62BZu4+\nLbpuZMprUt/rKaBz2j+ESBZsVJ++me0AtAfeAFq5exmEPwxAy+iyNsDClJctjs6JZFvLjayjbYBF\nKecXEdfdda9x97XAl2a2ZeZCF8mMGid9M9uM0MK5Imrxr79+g9ZzkFyXzjqqLkvJSw1qcpGZNSAk\n/EfdfWx0uszMWrl7WfS1+LPo/GJg25SXt43Orf+e+iMhGZFatzayjv5Y3a342SdmVh/Y3N0/39D9\nRTLB3Wvd6KhpS/9hYJa7D045Nw44NyqfA4xNOd8tGu3QDtgZmFrVm7p7Iv8GDBhQVPctls/co8dH\ntGy5F6tWheNIjeuohy6g5WbWMXqwe/Z6rzknKp9KeDBcrUL/f50r9y7Gz1xXG2zpm9mhwBnAf81s\nOuEr8rXAIGC0mfUC5hNGQ+Dus8xsNDALWA1c4umIVORHlJT04JVXSoFlNG26HXfffWPFj47eyDp6\nKTAcaAy84O4vRucfAh41s3nAMqBb5j+VSGTYMJg+Hbp3r/NbbTDpu/tkoH41Pz6qmtfcCtxah7hE\nauybb2Du3CfWHZ98MlxyCVx6aS/cfaPqqLu/Cexdxfnvif5oiGTdX/8Kb70F999f57cqyhm5JSUl\nRXXfJO+djfs2bRp+F1q2hFat4L77Mn7LnKT6VaD3njs3JHyARo3q/HaWVM+LmanXR9Jq6VL44AM4\n6KBwbGZ4HR541ZbqtqTVTTfBgAGhfNJJ2NixdarXRdnSl8K01VZxwhcpCO7wt7/Fx2no01dLXwqW\nWvqS995+G9q3D+WmTaGsDNtsM7X0pfh89VXSEYhkQWorv2vXkPjrSElf8s78+dCuHfzpT7BmTdLR\niGRIeXnau3ZA3TuSZ8rL4eijYVI0Nap7d3jiiaqvVfeO5LXJk+Gww0K5RQtYsgQaNapzvVZLX/LK\nfffFCb9ePbj88mTjEcmY1NbMKaekZbgmKOlLHpk7F/r2jY+vuQYOOSS5eEQyZvVqGDMmPu7RI21v\nraQveaNPH1i5MpT33hsGDkw0HJHMmTgR/ve/UG7dGg4/PG1vraQveWPoUOjcGRo2hJEjYZNNko5I\nJENSu3a6d4f61a2Es/H0IFfySnl5mJF+wAEbvlYPciUvffttWFPkm2/C8ZtvQocO636sB7lSVOrV\nq1nCF8lb48bFCX/33WG//dL69kr6IiK55PHH43KPHmDp/bKq7h3JWUuWhFUza1vn1b0jeWfpUthm\nm3jW4fvvw047VbpE3TtSkL79Fjp1gmOOgYULN3y9SEEYPTpO+Icc8oOEnw5K+pKTrr02jMt/6SX4\n+c9h1aqkIxLJgtSunTPOyMgt1L0jOae0FI44Ij4eNgzOO2/j30fdO5JXPvwwbtk3aACffAI//ekP\nLlP3jhSUFSvg3HPj4+OPh969EwtHJHseeywuH3tslQk/HZT0Jafcc09YRRPCGlPDhqV98IJI7nGv\nnPTPPDNjt9rgxugi2dS3b6j/N90UFldr3TrpiESyYOpUmDcvlJs1C2vnZ4iSvuSUhg3hD38Iz7Da\ntUs6GpEsefTRuHzKKdCkScZupQe5UrD0IFfywqpV4SvtsmXheNKkyiMZ1qMHuSIi+eyf/4wT/rbb\nhgkqGaSkL4n67LMwCVGkaKV27Zx5ZlhgKoOU9CUx7mE45l57wbPPJh2NSAK++KJy5T/rrIzfUklf\nEjN8ODz3HJSVhcEKs2cnHZFIlj35ZDzdfP/9YY89Mn5LJX1JxPz5cMUV8fHll2elvovklpEj4/I5\n52Tllhq9I1lXXg5HHQUvvxyOd9kFZsyATTdN7300ekdy2rx5sOuuodygAXz6KWy11QZfptE7knde\ney2srwPhmdWIEelP+CI5L7WVf8IJNUr46aCkL1nlHvZ4njQJdtgBrrkmrCArUlTKyysn/bPPztqt\n1b0jifnqK2jUKHMbnKt7R3LWpEnQuXMob7llWFGzhr8Ida3XWoZBEtOsWdIRiCRkxIi43KNH5lo+\nVVBLXwqWWvqSk77+GrbeOt78fNo0OOCAGr9cD3Il561aBVOmJB2FSI4YMyZO+HvuGcbnZ5GSvmTc\nTTeFh7VXXw3ffZd0NCIJGz48LvfsmfUNI5T0JaOmTIFbbw2jdu68E554IvsxmNnvzOwdM5tpZo+b\nWSMza2FmE8xsjpmNN7PmKdf3N7N5ZjbbzLqknO8QvcdcM7s7+59E8t4HH8Crr4Zy/foZ3SylOkr6\nkjHffhsmGZaXh+OSkspbIWaDmbUGLgc6uPs+hMEL3YF+wER33w2YBPSPrt8TOA3YAzgOGGK2ril2\nP9Db3XcFdjWzY7L6YST/pT7APe640LefZUr6kjHXXgtz5oTyZpvBI49kfAHB6tQHmppZA6AJsBg4\nCaj4DRwB/CoqdwVGufsad/8YmAd0NLOtgWbuPi26bmTKa0Q2bO3ayl072W4BRZT0JSOWLw9rSVW4\n664wGSvb3P0T4E5gASHZL3f3iUArdy+LrlkCtIxe0gZYmPIWi6NzbYBFKecXRedEambSJFgYVa2t\ntoITT0wkDI3Tl4xo3hxmzoSLLw4Pb3v3TiYOM9uC0KrfHlgOjDGzM4D1x1SmdYzlwIED15VLSkoo\nKSlJ59tLPnr44bh8xhlhZmINlJaWUlqxbkkaaJy+ZJR7SPoZ3PKzWlFX/KnAMe5+fnTuLOBg4Eig\nxN3Loq6bl919DzPrB7i7D4qufxEYAMyvuCY63w3o5O4XV3Ff1W2p7IsvYJtt4Pvvw/GMGbDvvrV6\nK43Tl5xmlkzCT7EAONjMGkcPZDsDs4BxwLnRNecAY6PyOKBbNMKnHbAzMDXqAlpuZh2j9zk75TUi\nP+6JJ+KE36FDrRN+Oqh7Rwqau081s6eA6cDq6L9DgWbAaDPrRWjFnxZdP8vMRhP+MKwGLklptl8K\nDAcaAy+4+4vZ/CySx1K7dpLq64yoe0fS5u9/DztgNciRpoSWYZCcMGMG7LdfKG+ySVg3v0WLWr+d\nunckJ4weDb/5DRx2WDxMU0SAhx6Ky7/5TZ0SfjqopS91tmQJ/Oxn8Pnn4fiCC+CBB5KNCdTSlxyw\nciW0bg1ffhmOJ06Ml1SupYy39M3sITMrM7OZKecGmNkiM3sr+ndsys+qnMIuhckdzj8/Tvjbbgu3\n355sTCI545ln4oTfrh0ccUSy8VCz7p1HgKqmm/+fu3eI/r0IYGZ7UP0UdilAw4fDc89VPm7evLqr\nRYrMgw/G5d69E5uSnmqDEbj7a8AXVfyoqmR+ElVMYa9ThJLTnn02Ll9+ORx5ZHKxiOSUDz6Al18O\n5Xr1Elt2YX11+bNzmZnNMLMHU1YorG4KuxSop56Ce++F9u3httuSjkYkh6S28o87DtrkRiqs7eC6\nIcBN7u5mdjNhbZPzNvZNNFU9/9WrB5ddFpZbqF8/2VjSPV1dpNZWrw4rDFY4//zkYllPjUbvmNn2\nwLPR0rTV/qy6Kezu/oN9kzTCQTJNo3ckMc88A7/+dShvsw0sWJC2CSzZGqdvpPThR2uVVPg18E5U\nrnIKe22DExHJS8OGxeWePXNnxiI16N4xsyeAEuAnZraAsPjUEWbWHigHPgYuhA1OYZcCMGZM2Pqw\nbdukIxHJUQsWwIspK3QkvOzC+jQ5S2ps5kw44ADYdNPw8PbMM7O+vedGUfeOJGLAgLAxNECXLjB+\nfFrfXsswSFasWgVnnx2eTy1fDn/5S7wNoohE1qypvOzCBRckF0s1lPSlRm68Ed5+O5QbNw5bfSY9\nWkck5zz/PCxeHMqtWoUVCHOMkr5s0JQplcfg33Yb7L57cvGI5KzURafOPRcaNkwslOoo6csGzZgR\nzx4vKQkzb0VkPR9/XPkBbg527YCSvtTAhReG1v4hh4T5JjmwfIhI7nnwwbACIcAxx8COOyYbTzU0\nekdqzD23R+usT6N3JGtWrYLttoOysnD897/DySdn5FYavSNZkW8JXySrxo6NE37r1nDiicnG8yOU\n9GWD1GgV2YD774/L55+fUzNw16fuHfmBl14K31ZPOCEc52srX907khVz5sTD2erXDw90MzhlXd07\nklbLloVJWL/8ZZg9vmJF0hGJ5LjUVv6JJ+b8GiVK+lLJZZeFPW8hzDNZtSo/W/kiWfHNN2G7uAqX\nXJJYKDWlpC/rjB4No0bFx8OGwVZbJRePSM4bNSqsSwKw88513vQ8G5T0BQit+9RGSs+eOT0AQSR5\n7nDfffHxxRfnxSSW3I9QsuKTT2CzzUJ5u+3grruSjUck573xBkyfHsqNG+fMHrgboqQvAHToEJZO\n7t0bHn4Ymjff8GtEilpqK79HD9hyy+Ri2QgasikFS0M2JWM++wy23TaMdAB4883QcsoCDdkUEcm2\nYcPihH/wwVlL+OmgpC8isjFWr648Nv+yy5KLpRaU9IvU3LnQrx98913SkYjkmbFj441SWraEU05J\nNp6NpKRfhNasgXPOgUGDYP/94x2xRKQG7r03Ll94IWyySXKx1IKSfhG6444w2gxg3jwtqCZSY2+/\nDa++Gsr164ekn2eU9IvMzJlwww3x8YAB0L59cvGI5JXUVv4pp0CbNsnFUksasllEVq2Cjh3j7pyD\nDoLXXsvpVWDrREM2Ja2WLQuLqVU8CJs8GX7+86yHoSGbUmMrV8JOO4Vy48YwYkThJnyRtBs6NE74\n++8f9g/NQ0r6RaR5c3jqKXj0URg8GHbbLemIssPMmpvZGDObbWbvmtlBZtbCzCaY2RwzG29mzVOu\n729m86Lru6Sc72BmM81srpndncynkUSsXl15Bm6fPnm7/Ky6d6RgVXwNNrPhwCvu/oiZNQCaAtcC\ny9z9djPrC7Rw935mtifwOHAg0BaYCOzi4Y2mAJe5+zQzewEY7O7jq7iv6nahefJJ6NYtlFu1gvnz\nExu1o+4dkR9hZpsDh7v7IwDuvsbdlwMnASOiy0YAv4rKXYFR0XUfA/OAjma2NdDM3adF141MeY0U\nusGD4/JFF+XdMM1USvpS6NoBS83sETN7y8yGmtmmQCt3LwNw9yVAy+j6NsDClNcvjs61ARalnF8U\nnZNCN2UKvP56KDdqFJJ+HlPSL2ArVsBpp4XZt0WsAdABuM/dOwDfAP2A9ftf1B8jVUtdZ7x7d9h6\n6+RiSQON3ShgV14JY8bAc8+F4cW9eycdUSIWAQvd/T/R8dOEpF9mZq3cvSzquvks+vliYNuU17eN\nzlV3vkoDBw5cVy4pKaGkpKRun0KSsXBhGP1Q4be/zXoIpaWllJaWpu399CC3QD3/fNjcvMLf/hY/\nhyoWKQ9yXwHOd/e5ZjYA2DS65HN3H1TNg9yDCN03LxE/yH0D6ANMA54H7nH3F6u4r+p2objmGvjz\nn0O5pARefjnRcKDuD3KV9AvQsmWw117xBuennhoGH+TpCLNaS0n6+wIPAg2BD4GeQH1gNKH1Ph84\nzd2/jF7XH+gNrAaucPcJ0fn9geFAY+AFd7+imvuqbheCr78Ok7Eq9sAdOxa6dk02JpT0pQrdu8cb\nnLdqBe+8U5wbnGtGrtTJvfeG8fgAu+wC772XE3vgasimVOIeJgo2bhyOhw0rzoQvUidr18LdKfPv\nfve7nEj46aCWfoGaMwf+8Q/o2zfpSJKjlr7U2tNPx+vkb7klLFgATZsmG1NE3Tsi1VDSl1qp+Lo8\nZUo4vv56+OMfk40phZK+SDWU9KVWJk+Gww4L5UaNwpILOTQ2X336IiLpVDFEE+DMM3Mq4aeDkn6e\nKy8PXY+PPaYdsETqbM4cGDcuPr766uRiyRAl/Tx3333hmdNZZ8Hpp4c/AiJSS3feGbeefvlL2GOP\nZOPJACX9PDZ3buXROTvuWDCjykSyb8mSsLNQhd//PrlYMkgpIk+tWQPnnBN2wwLYe2+48cZkYxLJ\na4MHhz1FIewrevjhycaTIUr6eeqOO+CNN0K5YUMYOTKvl/gWSdaKFXD//fFx374Fu26Jkn6eOvpo\n2HPPUB4wANq3TzYekbz2wAPxGju77gonnZRsPBmkcfp57LvvQl299FJtcF4VjdOXGvnuO2jXLl6h\ncNgwOO+8ZGP6EZqcJVINJX2pkWHD4IILQrl1a/jww5zuK9XkLBGR2lq7Fm6/PT6+8sqcTvjpsMGk\nb2YPmVmZmc1MOdfCzCaY2RwzG29mzVN+1t/M5pnZbDPrkqnAi43G34tkwJgx8P77obzFFnGLv4DV\npKX/CHDMeuf6ARPdfTdgEtAfINp16DRgD+A4YIhZgT4Cz7KrroLzz4evvko6EpEC4Q633BIf9+kD\nzZolF0+W1KhP38y2B551932i4/eATin7i5a6++5m1g9wdx8UXfdPYKC7T6niPdXvWUMvvwxHHhnK\nO+wA/+//wTbbJBpSXlCfvvyo556DE08M5aZNw8JqP/lJsjHVQFJ9+i3dvQzA3ZcALaPzbYCFKdct\njs5JLa1YAT17xsd77llw6z+JZJ873HxzfHzhhXmR8NMhXQP9atWsGThw4LpySUkJJSUlaQqncFx1\nVWiAALRoEQYaqMOsaqWlpZSWliYdhuSDf/0rXi+/UaPwi1Ykatu9MxsoSeneednd96iie+dFYIC6\nd2pn/Hg49tj4+Iknwv63UjPq3pFqlZTAK6+E8sUXw5AhiYazMbLVvWPRvwrjgHOj8jnA2JTz3cys\nkZm1A3YGptY2uGJ38MHQq1con3oqdOuWbDwiBeHf/44Tfv36cM01ycaTZRvs3jGzJ4AS4CdmtgAY\nANwGjDGzXsB8wogd3H2WmY0GZgGrgUvU5Km95s3hoYfg17+Ggw5St45IWqRufXjWWWF0RBHRjFwp\nWOrekR+YMiV8hYawDvmcObDzzsnGtJE0I1dEpKZS1x/v0SPvEn46qKWfQ9xh9eowmEDqTi19qWTq\n1NBPCqGvdNYs2H33ZGOqBbX0C8jw4dChA7z1VtKRiBSg1FZ+9+55mfDTQS39HDF/ftj96quvwjLJ\nzz5bebimbDy19GWd1L58M3j33bzd/1Yt/QJQXh6GZlasq9OuHfziF8nGJFJQUiaCcvrpeZvw00FJ\nPwfcdx9MmhTK9eqFrQ833TTZmEQKxuuvw4svhnK9emGruSKmpJ+wRYvCdpwV+vaNv4WKSBrccENc\n7tGjaPvyK6hPP2Hu8NhjcPnlsN12MG1awe/hkDXq0xdefRU6dQrlevVg9uywB24e03aJBWLRIvj6\n66JvhKSVkn6Rcw9r7Lz6ajju2RMefjjRkNJBSV+kGkr6RW7CBDgm2v+pQQOYOzeMkshzGr0jIrI+\nd7juuvj4vPMKIuGng5J+ApYvTzoCkQL3j3/Af/4Tyo0bw/XXJxtPDlHSz7KpU2HbbeEvf9Fm5yIZ\nsXZt5SR/ySXQRhv4VVDSz6KVK+Hss8MkrMsvh2uvTTqi4mFm9czsLTMbFx23MLMJZjbHzMabWfOU\na/ub2Twzm21mXVLOdzCzmWY218zuTuJzSA089lhYVwdgs82gX79k48kxSvpZ1L9/WMkVQl286KJk\n4ykyVxD2eajQD5jo7rsBk4D+AGa2J2F/iD2A44AhZut2Mrgf6O3uuwK7mtkx2Qpeauj77ytPvrrq\nKvjpT5OLJwcp6WdJaSkMHhwf/9//Fd3eDYkxs7bA8cCDKadPAkZE5RHAr6JyV2CUu69x94+BeUDH\naFvQZu4+LbpuZMprJFf89a/xptI/+QlceWWy8eQgJf0sKC8P3YoVjjsuDCaQrLkL+D2QOo6ylbuX\nAbj7EqBldL4NsDDlusXRuTbAopTzi6JzkitWrICbb46Pr7sONt88uXhylJJ+FtSrB888Ax07QosW\n8OCD2vowW8zsBKDM3WdQeZ/n9Wlgfb674w5YujSUt9++cktL1tngHrmSHrvtBpMnw3vvQevWSUdT\nVA4FuprZ8UAToJmZPQosMbNW7l4Wdd18Fl2/GNg25fVto3PVna/SwJRVHUtKSigpKan7J5Hqffop\n3HlnfHzTTQWznklpaSmlpaVpez/NyJWCtf7MRTPrBFzl7l3N7HZgmbsPMrO+QAt37xc9yH0cOIjQ\nffMSsIu7u5m9AfQBpgHPA/e4+4tV3Fd1O9suvBCGDg3lffYJOxHVr59sTBlS1xm5aulLsboNGG1m\nvYD5hBE7uPssMxtNGOmzGrgkJYNfCgwHGgMvVJXwJQGzZ4c+0wq3316wCT8d1NLPkIULoW1b9d0n\nSWvvFIkTT4Tnngvlzp3hpZcK+hdPa+/koCVLYL/94NRT4X//SzoakQL28stxwjcLD3MLOOGng5J+\nmrnDBRfAsmXw9NNwwgnhnIikWXl5mHxV4eyzoX375OLJE0r6aTZ8eNjUvMJtt6nhIZIRI0fC9Omh\n3KRJ5TH6Ui0l/TSaPx+uuCI+vuwyOPLI5OIRKVjffFN58arf/z48RJMNUtJPoz/9KSymBrDLLjBo\nULLxiBSsQYPC2HyAbbYJSV9qREk/jQYPDkt9NGgAI0bAppsmHZFIAVqwAP785/j4llvCCoZSIxqy\nmQELFoRNziVZGrJZoLp1gyefDOX99w+bVNQrnvar9sgVqYaSfgF69VXo1Ck+/ve/4bDDkosnARqn\nLyLFYe1a6NMnPu7WregSfjoo6dfBRx/FD25FJMOGDoW33w7lJk3Ccguy0ZT0a2nVKjj55LC20yuv\nJB2NSIFbujSsj1/h2mvDZtOy0bTgWi3ddFPc6Dj++DBGf6utko1JpGBddx188UUo77gjXH11svHk\nMbX0a2HKFLj11vj4lluU8EUyZupUGDYsPh48GBo3Ti6ePKfROxvp22+hQ4d4g/NOnWDSpKIaMZY3\nNHqnAKxdCwcdBG++GY5POCFeYK1IafROlo0dGyf8zTaDRx5RwhfJmAceiBP+JpvAPfckG08BULra\nSN27w7hx0KoV3HUXtGuXdEQiBWrJksrr6/TvH/rzpU7UvVNLX34JzZtrBc1cpu6dPHfmmfD446G8\n887w3/+qLx9tl5iYLbZIOgKRAvbSS3HCBxgyRAk/TdS9IyK5ZeVKuPji+LhbNzj66OTiKTBK+hvw\n+efxPg0ikgV//CN88EEob7FFeHgmaaOkvwGXXgodO4Z6uGZN0tGIFLiZMysvmzxoEGy9dXLxFCA9\nyP0Ro0fD6afHx//6l3bCyid6kJtn1q6FQw6BadPC8eGHQ2mpxkSvR+P0M2TJksrdij17KuGLZNTd\nd8cJv1GjsMCaEn7a6f9oFdzh/PNDfz6EDVHUrSiSQe+/D3/4Q3w8YADsvnty8RQwde9U4YMPwlIL\nK1aEY3Xr5Cd17+SJ8nI44oiwQQrAvvuGFn/DhsnGlaMSHadvZh8Dy4FyYLW7dzSzFsCTwPbAx8Bp\n7r68LvfJtp12gnfegV69QmNDCV8kg4YMiRN+/frw0ENK+BlUp5a+mX0I7O/uX6ScGwQsc/fbzawv\n0MLd+1Xx2pxvDbnD6tWhe1Hyj1r6eeD990PL/ttvw/F118HNNycbU45LdI9cM/sIOMDdl6Wcew/o\n5O5lZrY1UOruP+ic0y+GZJqSfo5buxZKSuC118Lxz34WFlfbZJNEw8p1SY/eceAlM5tmZudF51q5\nexmAuy8BWtbxHiJSiAYPjhN+/fowYoQSfhbUde2dQ939UzP7KTDBzOYQ/hCkqrbJM3DgwHXlkpIS\nSkpK6hhO7axZA089BaedphFi+ay0tJTS0tKkw5CaePfdyitoXncd7L9/cvEUkbSN3jGzAcDXwHlA\nSUr3zsvuvkcV1+fMV+Bbbw3176ijwjOk7bZLOiJJB3Xv5KhVq+Dgg+P1TTp0gNdf18OzGkqse8fM\nNjWzzaJyU6AL8F9gHHBudNk5wNja3iMb3n47DAkGmDgRnngi2XhECt6AAXHC32QTePRRJfwsqnVL\n38zaAc8Qum8aAI+7+21mtiUwGtgWmE8YsvllFa9PvDW0ahUceGBY7gPCGjuTJ0MDLThdENTSz0Gv\nvBLG5Ff8/7nrLvjtb5ONKc8kOnqnLnLhF+P66+FPfwrlxo1D40OTAAuHkn6O+eIL2GcfWLQoHB91\nFIwfrwdpGynp0Tt5a82asKF5hVtvVcIXyRh3uOCCOOFvuSUMH66En4CibumvWQO33RYmA774oupf\noVFLP4cMHQoXXhgfP/MM/OpXycWTx9S9kwbl5Ur4hcjCBsbbAiOBVoTlQoa5+z0/tlyImfUHegFr\ngCvcfUJ0vgMwHGgMvODuVXZG51LdzgnvvBMenn33XTi+6CK4//5kY8pjSvoi1YiS/jbA1u4+Ixpt\n9iZwEtCTKpYLMbM9gceBA4G2wERgF3d3M5sCXObu08zsBWCwu4+v4r6q2xW++SYk/Nmzw/Fee8HU\nqdCkSbJx5TH16Yv8CHdf4u4zovLXwGxCMj8JGBFdNgKo6GvoCoxy9zXu/jEwD+gYzTlp5u7Rgu+M\nTHmNVMU9bD1XkfCbNIFRo5TwE1ZUSX/YMFi6NOkoJClmtgPQHniD6pcLaQMsTHnZ4uhcG2BRyvlF\n0TmpzsN8Fn+XAAALc0lEQVQPh6UVKgwZEtbXkUQVzYj0558Pgweuvz4k/65dk45Isinq2nmK0Ef/\ntZnVeLmQ2siVJUYSM316aOVXOOccOPfcxMLJZ+leXqQo+vSXLQtdiUuWhONTTw3730phq+j7NLMG\nwHPAP919cPSz2VSxXIiZ9QPc3QdF170IDCBMNFy3pIiZdSOsJntxFfct7j79zz+HAw6Ajz4Kx3vv\nDW+8AZtummxcBUJ9+jVw2WVxwm/VKnzLlKLyMDCrIuFHqlsuZBzQzcwaRbPOdwamRl1Ay82so4Un\nxGeT40uMJGLtWjjjjDjhN2sGY8Yo4eeQgu/eGT06PDuqMGwYbLVVcvFIdpnZocAZwH/NbDqhG+da\nYBAw2sx6ES0XAuDus8xsNDALWA1cktJsv5TKQzZfzOZnyQs33BAmvVQYMQJ22y25eOQHCj7pv/ce\nmIWBBD17woknJh2RZJO7TwbqV/Pjo6p5za3ArVWcfxPYO33RFZgxY+CWW+Ljfv3g5JOTi0eqVBR9\n+q++Ghb2+8c/oHnzrNxScoBm5GbR9Olw6KGwcmU4PvZYeO65sDmKpJUmZ4lUQ0k/S5YsCUvULoxG\nuu6yC0yZAi1aJBtXgdKDXBFJzsqVYQ2dioS/+eYwbpwSfg5T0heR2ikvDw/KpkwJx/XqhVETWq42\npxVc0n/ssdCHLyIZdt118OST8fFdd8FxxyUXj9RIQSX9uXPDrNuSErjqqnhRPxFJswceCOuSV7j0\nUrj88uTikRormKS/Zk2Y6b1yZRieOXFiGKopImk2bhxcckl8fMIJcPfd+oXLEwWT9O+4I8z0BmjY\nMMwJ2WSTZGMSKTivvQannx768yEstzBqlDaWziMFkfRnzgwTASsMGADt2ycXj0hBmjkzzG6s6Dfd\ncccwFn+zzZKNSzZKQST9pUvjEWIHHgh9+yYbj0jBef996NIFvvwyHLdsCRMmhMWsJK8URNI/8kh4\n992wztPIkfqmKZJWCxZA585QVhaON988rK+z007JxiW1ohm5UrA0IzcNFi+GTp3ggw/CcZMmMH48\nHH54snEVMc3IFZHM+PRTOOKIOOE3ahQWsFLCz2tK+iLyQ4sXhwkv8+aF4wYNwiqaXbokGpbUXV4m\n/dJSuPnmMDZfRNJs/vzQpTN3bjhu0CBsTKE9RgtC3vXpr1gB++wT6uWBB8Lf/qbnSVI19enXwrx5\n4aFtxQJqDRqEpRZ+/etk45J1iq5P/6qrQsKHMIqsSZNk4xEpGDNmwGGHxQm/USN4+mkl/AKTV0n/\n+efhwQfj4yFDoHXr5OIRKRilpaEP/7PPwnGTJvDss+rSKUB5072zbBnstVe8wfmpp4ZuRpHqqHun\nhkaPhrPOglWrwnHz5mGm7WGHJRuXVKloundWrQpJH8IkwCFDko1HJO+5w+23h7V0KhL+1lvDK68o\n4RewvGnpQ1jj6f77Yfvt4Ze/zFBgUjDU0v8Rq1bBxRfDww/H53bbLcy03WGHxMKSDdMeuSLVUNKv\nRlkZnHJKWDGzwi9+Ac88A1tumVxcUiNF070jImkwdWpYDjk14Z99dlg8TQm/KCjpixQD99A3evjh\nsGhROGcWdr8aPlybTxSRnE368+eH4cEVQ4ZFpJaWL4du3cJuVxUPbLfYAl54IaxDrh2vikpOJv3y\ncujVK3Qx7r13WONJRGph8uSwo1Dq+OZ994U334Rjj00uLklMTib9++6DSZNC+auvtE+DyEb7/nvo\n3z88oP344/j8RRfB66+HXa+kKOXcdiNz51be+eqaa+CQQ5KLRyTvTJ0aviq/+258bostYOjQMKtR\nilpODdlcsyY8Z6rY4HzvvWHaND1jktopuiGbK1bAH/4A994bHtxWOPJIeOQR2G677MckaVdwQzaP\nPz4s7NewYdj6UAlfZAPKy+Gxx8LkqnvuiRN+06bhD8BLLynhyzo51dKvMH16+NerV5aDkoJSFC39\nyZPh6qvjr8cVunQJQzTVd19wNCNXpBoFnfTffhtuuAHGjat8fptt4M47wxBNDcUsSHWt1zn3IFdE\nfsS0aXDLLT8cx9yoEfzud3DdddCsWTKxSV5IPOm7q0Ei8qPWrg1r2999d1gBc309eoT9Q9u1y35s\nkncSfZC7ciUccUSozyKyno8+goEDQzI/+eQfJvyTTw7dPI8/roQvNZaxpG9mx5rZe2Y218z6VnVN\n//6hHnftCn36ZCoSkfSpSb2uk4ULw4ibww8PD2FvvLHyWiQNGsAZZ8DMmfD3v4cNo0U2QkaSvpnV\nA/4CHAP8DOhuZruvf93gwXE5m3W3tLQ0ezfLgfsmee8kP3O61bReb5Svvw4rXPbvD/vtF4ZW9ulT\neRVMgK22Ctd8+GEYnrn33j94K9Wv4rl3XWSqpd8RmOfu8919NTAKOKm6i48/Hnr3zlAkVVAFLfz7\nZshG1etKVq8OCXvChNDa6d07rInTvDkcc0xY7XLGjMqvqV8//HI8+SQsXhwe4G67bbW3UP0qnnvX\nRaYe5LYBUtfHXET4hfmBFi1g2DA9zJW8UON6zdFHwzffhBUuly6NNxzfkIYNw4Ouk08Oy8y2bFnX\nmEUqSXz0zpAh0Lp10lGIpNnEiTW7zixs/lxSAp07h4S/+eYZDU2KW0YmZ5nZwcBAdz82Ou4HuLsP\nSrlGM7Mk49I5Oasm9To6r7otGZVzM3LNrD4wB+gMfApMBbq7++y030wkS1SvpRBkpHvH3dea2WXA\nBMLD4of0iyH5TvVaCkFia++IiEj2JTIjN+MTXOL7tDWzSWb2rpn918z6ROdbmNkEM5tjZuPNrHmG\n7l/PzN4ys3FZvm9zMxtjZrOjz35QNu5tZr8zs3fMbKaZPW5mjTJ1XzN7yMzKzGxmyrlq72Vm/c1s\nXvT/pEs6YqgipqzU6+heqtuq2xU/26i6nfWkn5EJLtVbA1zp7j8DDgEuje7VD5jo7rsBk4D+Gbr/\nFcCslONs3Xcw8IK77wHsC7yX6XubWWvgcqCDu+9D6DrsnsH7PkKoQ6mqvJeZ7QmcBuwBHAcMMUvv\nIOEs12tQ3VbdppZ1292z+g84GPhnynE/oG+W7v0P4ChCRWkVndsaeC8D92oLvASUAOOic9m47+bA\nB1Wcz+i9gdbAfKAF4ZdiXKb/XwPbAzM39BnXr2PAP4GD0vz5E6vX0f1UtzN070Kr20l071Q1waVN\npm9qZjsA7YE3CP/zygDcfQmQiRkwdwG/B1IfmmTjvu2ApWb2SPT1e6iZbZrpe7v7J8CdwAJgMbDc\n3Sdm+r7raVnNvdavc4tJf51LpF6D6nam711odTvntkvMBDPbDHgKuMLdv6ZyZaWK47re7wSgzN1n\nAD/2VSsTT9EbAB2A+9y9A/ANoTWQ6c+8BWFJgu0JLaOmZnZGpu+7AQU/SkF1W3V7YyWR9BcDqRt2\nto3OZYSZNSD8Ujzq7mOj02Vm1ir6+dZADefI19ihQFcz+xD4G3CkmT0KLMnwfSG0MBe6+3+i46cJ\nvyiZ/sxHAR+6++fuvhZ4Bvh5Fu6bqrp7LQZSF63JRJ3Lar0G1W1Ut6EWdTuJpD8N2NnMtjezRkA3\nQh9ZpjwMzHL3lDU9GQecG5XPAcau/6K6cPdr3X07d9+R8PkmuftZwLOZvG907zJgoZntGp3qDLxL\nhj8z4avvwWbWOHqQ1JnwoC+T9zUqtzaru9c4oFs04qIdsDNhYlU6Zbteg+q26nZt6na6H7bU8CHF\nsYSZjfOAfhm8z6HAWmAGMB14K7r3lsDEKIYJwBYZjKET8cOurNyXMKphWvS5/w40z8a9gQHAbGAm\nMAJomKn7Ak8AnwDfE34pexIetFV5L8Joh/ej+Lrkc71W3Vbdrkvd1uQsEZEiUhQPckVEJFDSFxEp\nIkr6IiJFRElfRKSIKOmLiBQRJX0RkSKipC8iUkSU9EVEisj/BxLXSfTGxdmLAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"execution_count": 53,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"axes[0].plot(x,y,color=\"blue\", lw=3, ls='--')\n",
"axes[1].plot(x,z,color=\"red\", lw=3, ls='-')\n",
"fig"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"** See if you can resize the plot by adding the figsize() argument in plt.subplots() are copying and pasting your previous code.**"
]
},
{
"cell_type": "code",
"execution_count": 54,
"metadata": {
"collapsed": false
},
"outputs": [
{
"data": {
"text/plain": [
""
]
},
"execution_count": 54,
"metadata": {},
"output_type": "execute_result"
},
{
"data": {
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAtsAAACgCAYAAADdCqCDAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3Xuc1VW5x/HPA6OiJLdOYQoiJorgFRRNODmKKXoQzAuJ\nwpCUpxMamuURtAI7dMGXl7TU7IQKI4qoGWqoiDqdKDS8gOWQYggIwoBySRKIy3P+WL9x9szsgT2z\nL799+b5fr3mxZ+3fb++1nHHN81r7Wesxd0dERERERDKvVdwdEBEREREpVgq2RURERESyRMG2iIiI\niEiWKNgWEREREckSBdsiIiIiIlmiYFtEREREJEuyGmybWRcze8HM3jSzv5jZ2Ki9o5nNMbO3zOxZ\nM2ufcM94M1tiZovN7Mxs9k9EpJiZ2RQzqzGzNxLamj3/mlkfM3vDzN42s58ltO9tZjOie+ab2cG5\nG52ISGHI9sr2DuAad+8NfAG4wsx6AuOAue5+BPACMB7AzHoBw4AjgbOBu8zMstxHEZFidR9wVoO2\nlsy/dwNfc/fDgcPNrPY1vwasd/cewM+Am7I5GBGRQpTVYNvd17j7wujxZmAx0AUYCkyNLpsKnBc9\nHgLMcPcd7r4MWAL0y2YfRUSKlbvPAzY0aG7W/GtmBwD7u/uC6LppCfckvtajwMCMD0JEpMDlLGfb\nzA4BjgNeAjq7ew2EgBz4bHTZQcB7CbetitpERCQzPtvM+fcgYGVC+0rq5uVP7nH3ncBGM+uUva6L\niBSenATbZvYpwqrHVdEKd8Ma8aoZLyISj0zOv0r7ExFpoCzbb2BmZYRAu9LdZ0XNNWbW2d1roo8o\n10btq4CuCbd3idoavqaCcxEpaO4eV2Da3Pl3d/Ny7XPvm1lroJ27r0/2ppq3RaSQpTNn52Jl+16g\n2t1vT2h7Avhq9HgUMCuh/eJoh3t34DDgz8le1N1L6mvChAmx90Fj1pg15sZfH33kTJvmnHGGE+LJ\n3X/df3/OY06j/opzs+ZfD6kmm8ysX7RhsqLBPaOixxcRNlw2Ke6flX6vNWaNWWPe7deuXfhtt+F/\n+EO99nRldWXbzPoDlwJ/MbPXCX9trgcmAzPNbDSwnLADHnevNrOZQDWwHRjjmRiliEgG7dwJL74I\nlZXw2GPwz3+mfu+sWXu+JlPM7EGgHPi0ma0AJgA/BR5p5vx7BXA/0AaY7e7PRO1TgEozWwJ8CFyc\ni3GJiGTFlCnw7W/DwQfDokXQoUNGXjarwba7/xFo3cTTZzRxz0+An2StUyIiLVRdDdOmwQMPwKpG\nCW5N22cfGDoUKirgzDNh772z18dE7n5JE081a/5191eBo5O0byMK1kVECl5FBdx9N7z2Gtx0E/z4\nxxl52aznbEtmlJeXx92FnNOYS0O+j3ntWpgxIwTZr77avHv794dRo+CiizK2QCIFIt9/r7NBYy4N\nRT3mvfeGhx6Ce++FiRMz9rJWiFkaZqbsEhHJmq1b4amnQoD99NOwY0fq9x56aFgcGTECPv/55NeY\nGR7fBslYaN4WkbyyfTvstVdKl6Y7Z2tlW0QEcIc//SkE2A8/DJs2pX5vhw7wla/AyJFwyimgurci\nInnKHe68E+64A15+GTp2zPpbamVbREra0qVho2NlJfz976nf17o1nH12WMU+91xo0yb1e7WyLSIS\ngzVrYPTo8JElwLBhIU9wDyskWtkWEWmmjRth5swQYM+b17x7+/YNK9jDh8NnP7vn60VEJA/89rdw\n+eXwwQd1bW+9FT7GzPKmGq1si0hJ2L4dnn02pIk88QRs25b6vQcdFALskSOhV6/0+6KVbRGRHHrz\nTTjqqPpt3/0uTJoUjovag3TnbAXbIlK03OH110OA/eCDsG5d6ve2bQsXXBAC7NNOC2kjmaJgW0Qk\nx8aOhZ//PKyeTJ0KAwemfKvSSEREGli5EqZPD0F2dXXq95nB6aeHPOzzz4dPfSp7fRQRkRyaPDms\nYl9/fU42RSbSyraIFIXNm+Hxx0OA/fzzYVU7Vb16hQD70kuhS5fs9bGWVrZFRLJk3Tr4zGcy+pJa\n2RaRkrVzJ1RVhQC7uWXTP/OZsMmxogL69NFxfSIiBW3nTrj5ZrjxRnjuuVBVLE9oZVtECk5t2fTp\n00PKSKr23huGDAlVHc86K+V6BhmnlW0RkQxasgS++tVQLAFCRbGFCzOWC6iVbREpCemWTa+oCGXT\nc5yqJyIi2bJrF9x1F/z3f8OWLXXtnTrBhg15s/FGK9sikre2boUnn6wrm75zZ+r3Hnpo3XF9TZVN\nj4tWtkVEMmD9eujZs+6oqbIy+P73wybIssytJ+voPxEpKu4wf344malYy6Yr2BYRyZDHHoMLLwzn\naE+bBscfn/G3ULAtIkWhpWXTy8pg0KAQYA8Z0ryy6XHJh2DbzL4NfA3YBfwFuAxoCzwMdAOWAcPc\nfVN0/XhgNLADuMrd50TtfYD7gTbAbHe/uon307wtItnx0EPhvNYUCtS0hIJtESlYGzfCI4+ExYhS\nKpsed7BtZgcC84Ce7v4vM3sYmA30Aj5095vM7Dqgo7uPM7NewHTgRKALMBfo4e5uZi8DV7r7AjOb\nDdzu7s8meU/N2yLSMrt2wcyZYQU7g+khqdIGSREpKOmWTR8xIgTZvXtnr48lojXQ1sx2AfsCq4Dx\nwKnR81OBKmAcMASY4e47gGVmtgToZ2bLgf3dfUF0zzTgPKBRsC0i0iJLl8Lll8MLL8CyZTBuXNw9\najYF2yKSdemWTT///HBcX3l5Zsumlyp3f9/MbgFWAB8Dc9x9rpl1dvea6Jo1Zlb7mcFBwPyEl1gV\nte0AEg9fXBm1i4ikZ+dO+MUvwmbHjz8ObRMmwNChcOSR8fatmRRsi0jWrFpVVzb9zTdTv88MBg4M\nx/V9+ct5c3pT0TCzDsBQQm72JuARM7sUaJjnobwPEcm9DRtg8OC6c7MBWrWCq6+G7t3j61cLZTXY\nNrMpwGCgxt2PidomAJcDa6PLrnf3Z6Lnkm7AEZHCkW7Z9FGj4JJLclM2vYSdASx19/UAZvY4cApQ\nU7u6bWYHUDdPrwK6JtzfJWprqj2piRMnfvK4vLyc8vLytAciIkWoQwfYd9+67486Cu69F048MSdv\nX1VVRVVVVcZeL6sbJM1sALAZmNYg2P7I3W9tcO2RwIMk2YCT5HW10UYkj6RbNv2SS8Iq9vHH5+9x\nfZmUBxsk+wFTCPPtNuA+YAFwMLDe3Sc3sUHyJEKayHPUbZB8CRgb3f874I7aBZQG76l5W0RSt3Rp\n2Ak/dizccEMoARyTvN4g6e7zzKxbkqeSdXgoSTbgAC9ns48i0nLV1eGovgceaF7Z9H32Ccf0VVTE\nWza9VLn7n83sUeB1YHv076+A/YGZZjYaWA4Mi66vNrOZQHV0/ZiEyPkK6h/91yjQFhFpknvyVZZD\nDw0bItu3z3mXMi3rR/9FwfaTDVa2v0rIE3wF+I67bzKznwPz3f3B6LpfEybu3yR5Ta2QiMRk3bpw\npGlLyqYPGFBXNr1Dh+z0rxDEvbIdB83bItLInDlw7bWhVPDBB8fdmybl9cp2E+4Cfhh9/DgJuAX4\negz9EJEU1ZZNr6wMZdN37Ej93kMPDQH2iBH5VzZdRERisG4dXHNN+FgU4JvfhKeeKto8wpwH2+6e\neOjX/wJPRo+10UYkj7iHjeDTpjW/bHr79nVl0/v3L9r5M2WZ3mwjIlKQ3GHqVPjud+HDD+va58+H\n5cvhkENi61o25SKN5BBCGsnR0fcHuPua6PG3gRPd/ZLdbcBJ8pr6OFIkS1paNr11azj77MIqmx4X\npZGISEl6913o2RP+9a+6tuHD4bbboHPn+Pq1B3mdRmJmDwLlwKfNbAUwATjNzI4DdgHLgG/AHjfg\niEgWpVs2vaICLr648Mqmi4hIDnXvDuPHw403QrducNddcM45cfcq67K+sp0NWiERSZ/KpsdHK9si\nUrK2bYNbbw1H+rVtG3dvUpLunK1gW6SEqGx6flCwLSJFbfXqcGzVNdfE3ZOMyOs0EhHJDyqbLiIi\nWbdjB9x9N3zve/CPf8Bhh4VNPCVOK9siRUpl0/OXVrZFpOjMnw9jxsDChXVt3brB22/HWv0xE7Sy\nLSKfUNl0ERHJuVmz4Lzz6rcdfnjYAFnggXYmaGVbpAikUzZ96NAQYJ95psqm54pWtkWkqGzZEnbL\nv/su7Lsv3HBDOEt7n33i7llGaIOkSIlauxZmzFDZ9EKkYFtEis7s2XDPPXD77UVXnEbBtkgJUdn0\n4qBgW0QK0urVsGIFnHRS3D3JKeVsixS5xLLpM2eGAjSpUtl0ERFJ27ZtYcX6f/4HOnWCxYthv/3i\n7lXBaBV3B0Qkub//PRTZ6tEjpH386lepBdplZTB4MDz8MKxZEz7VGzBAgbbUZ2btzewRM1tsZm+a\n2Ulm1tHM5pjZW2b2rJm1T7h+vJktia4/M6G9j5m9YWZvm9nP4hmNiGSFO/zud3DUUXDddeGYqxUr\nYPLkuHtWULSyLZJHNm4Mq9fTpsEf/9i8e/v2DSvYw4erbLqk5HZgtrtfZGZlQFvgemCuu99kZtcB\n44FxZtYLGAYcCXQB5ppZjygv5G7ga+6+wMxmm9lZ7v5sPEMSkYz61rfgzjvrtx15JJx6ajz9KVDK\n2RaJWbpl00eODF+9emWvj5JZcedsm1k74HV3/3yD9r8Bp7p7jZkdAFS5e08zGwe4u0+OrnsamAgs\nB15w915R+8XR/d9M8p6at0UKzTPPwNlnh8ft24ePW8eMKbmjq5SzLVKA0imbvt9+cOGFYbOjyqZL\nC3UHPjCz+4BjgVeAq4HO7l4D4O5rzKz2M5KDgPkJ96+K2nYAiYdNrozaRaQYDBoE554Ln/scTJoU\nCjJIsynYFskhlU2XPFEG9AGucPdXzOw2YBzQcOlZS9Eixc49HG81YAC0a9f4+ccf16pOmhRsi2RZ\numXTKyrg0ktVNl0yaiXwnru/En3/GCHYrjGzzglpJGuj51cBXRPu7xK1NdWe1MSJEz95XF5eTnl5\neXqjEJH0vPEGfOc7MHcujBsHP/lJ42tKMNCuqqqiqqoqY6+nnG2RLMhE2fSRI6FPH50iUoziztmO\n+vB74HJ3f9vMJgC153itd/fJ0QbJju5eu0FyOnASIU3kOaCHu7uZvQSMBRYAvwPucPdnkryf5m2R\nfLFqFfzgB3DffXUrQPvsA3/7W9EVpMkE5WyL5JHq6hBgT5/evLLpe+8dyqaPHBlS5Eps74nEYyww\n3cz2ApYClwGtgZlmNpqw+XEYgLtXm9lMoBrYDoxJiJyvAO4H2hBON2kUaItIHnn/fTj8cPj447q2\n1q1h9GjlKGaJVrZF0pRO2fT+/UOAPWwYdOyYnf5J/smHle1c07wtkkcuvDB87ArhtJGbb9aRVruh\ncu0iMUi3bHrtcX0qm16aFGyLSKzeeSdsBvrxj8Pue9ktBdsiOVJbNr2yMlRnbE7Z9A4dwup1RQWc\ncorysEudgm0Rybrf/x5eeSVsgEzGXX+MUpTXwbaZTQEGAzXufkzU1hF4GOgGLAOGufum6LnxwGjC\n2a1XufucJl5Xk7bkzNKlIcCurAwl1FNVVhbyrysqwjGlbdpkr49SWBRsi0jWLFoE118Ps2eHXOy/\n/hV69oy7VwUt34PtAcBmYFpCsD0Z+DChHHDD3e4nEpUDJtrtnuR1NWlLVtWWTa+shHnzmndv374h\nwL74YpVNl+QUbItIxr3zDkyYECqlJRo2LHwcKy2W16eRuPs8M+vWoHkocGr0eCpQRTjfdQgww913\nAMvMbAnQD3g5m30UqZVu2fQRI0KQrT0mIiKSc7feWj/QNgubg374w/j6JEAKwbaZfQt4wN03ZOg9\nP9vMcsAiWZNO2fS2beGCC1Q2XURE8sD3vhfOzd66NZwlO2kSHHVU3L0SUlvZ7gwsMLPXgHuBZzP8\nWaA+V5ScU9l0KRRm9jxwi7vPTmj7lbv/Z4zdEpG4bN6c/I/PgQfCz38OvXvDF76Q+35Jk/YYbLv7\n98zs+8CZhKIHv4iKG0xx92ZsF/tEc8sBJ6Wyv9Jc6ZZNHzUqVHZU2XRprjRL/3YHrjOzE939xqjt\nhIx0TEQKx6ZNcPvtIV3k6aeTB9Rf/3ru+yV7lPIGSTM7lhBsDwJeBE4GnnP3/97DfYcAT7r70dH3\nk2lmOeAkr6mNNpISlU2XfNSczTbRp4r9gDsICxIjgBfdvU8Wu5hxmrdFWuijj8KK9c03w4Yoo/eM\nM+C55+LtVwnJ+gZJM7sKqAA+AH4NXOvu282sFbAEaDLYNrMHgXLg02a2ApgA/BR4pJnlgEWapbo6\nnCTywAMqmy4Fz6KN42PM7KvAPED1RkVKwZ/+BEOGwIcf1m9fsQLWr4dOneLplzTLHle2zexG4F53\nX57kuSPdfXG2OrebPikOl0ZUNl0KRTNXtr/h7vckfN8XuMLdR2etg1mgeVukBf7xDzjkkLoV7c9/\nPhzvN3x4KOYgOZHX52xniyZtqaWy6VKIdM62iKTsRz+CKVPg+98PZ8zqI9ecU7AtJae2bPq0aeGc\n/k2bUr9XZdMlHyjYFpFPfPgh3HYbnHwyDB7c+PktW8IqtoLs2CjYlpKRTtn0s88OK9gqmy75IB+C\n7WjfzSvASncfYmYdgYeBbsAyYJi7b4quHQ+MBnYAV7n7nKi9D3A/0AaY7e5X7+b9NG+LJFq9Gm65\nBX75y7B7/7jj4LXXtAqUhxRsS1FLt2z6yJEhtU1l0yWf5Emw/W2gL9AuCrYnAx+6+01NnBR1IuFI\n1rlEJ0WZ2cvAle6+wMxmA7e7+7NNvJ/mbREIH8eOHw/33tu4VPEzz8BZZ8XTL2lSXpdrF2mJdMum\n1+Zhq2y6SHJm1gU4B/gRcE3UPBQ4NXo8FagCxgFDgBnRiSjLzGwJ0M/MlgP7u/uC6J5pwHlA0mBb\nRCJt24agOvGP29FHww03hCP9pOgo2Ja8kE7Z9P32C2XTR41S2XSRFN0GXAu0T2jr7O41AO6+xsxq\nPw86CJifcN2qqG0HkHiw5sqoXUR2p6wMrr0WxoyBfv1CkD14MLRqFXfPJEsUbEusVq4MZdMrK1U2\nXSQXzOw/gBp3X2hm5bu5VDkfIi21c2f4aHbHDrjoosbPX3YZHHEEnHaacrRLgIJtyTmVTReJVX9g\niJmdA+wL7G9mlcAaM+vs7jVmdgCwNrp+FaFyZa0uUVtT7U2aOHHiJ4/Ly8spLy9PbyQi+WbLlvDH\n7ZZbYMkS6NoVzjuv8UkibdrA6afH00fZo6qqKqqqqjL2etogKTmhsukidfJhg2TUj1OB70QbJG8i\nbJCc3MQGyZMIaSLPUbdB8iVgLLAA+B1wh7s/08R7ad6W4rVjB0yaBHfeCR98UP+5yspwPrYULG2Q\nlLyWbtn0ioqwMVvHi4pk3U+BmWY2GlgODANw92ozmwlUA9uBMQlR8xXUP/ovaaAtUvTKysLO/sRA\nu317+OY3Q86jlDStbEvGrVsHDz2ksukiTcmXle1c0rwtRe+xx+DCC+Hgg+Hqq+HrX4f994+7V5IB\nOmdb8sLWrfDUUyHAVtl0kd1TsC1SgDZvDn/kPv4Yvvvdxs/v3AmzZsGQIWGlW4qGgm2JTTpl09u3\nD6vXo0apbLqUHgXbIgVk6dKQiz1lSvhDt//+IS+yXbu4eyY5opxtybnasunTpoXHqSorg0GDQoA9\neLDKpouISB7buTMUcXjiifrHZn30Edx/P4wdG1vXpLAo2JaUpFM2/YQTQorIxRerbLqIiBSI1q3D\nKlFioN2jB1x5ZTgnWyRFSiORJqVbNn3EiBBk9+6dvT6KFCKlkYjkEfeQh922bePnqqpC4ZlBg8JK\n9llnqdJjCVLOtmRUumXTL7wwBNinnaay6SJNUbAtkgc++ghmzIBf/hK6d4dHH218jTu8+27YyS8l\nS8G2ZMSqVaFs+rRpKpsukm0KtkVi9PrrcM894Y/e5s2hrXVrWLECDjww3r5JXtIGSWmx2rLplZUw\nd67KpouISJHbsgXKy+Ef/6jfvtdesGBBqKYmkmGxBdtmtgzYBOwCtrt7PzPrCDwMdAOWAcPcvRkH\nysmepFs2ffjwkCbSt6+O6xMRkQKz775w6aVw993h+5494T//M6wedeoUb9+kaMW5sr0LKHf3DQlt\n44C57n6TmV0HjI/aJE2LF4cAW2XTRUSkqL33XviD17s3nHde4+cvvzysbH/jGzBggFaOJOtiy9k2\ns3eBE9z9w4S2vwGnunuNmR0AVLl7zyT3KvcvBemUTR8wIKxgX3SRyqaLZJpytkUy7OOPQ17k1Kl1\neZFf/CL8/vdx90yKQMFukDSzpcBGYCdwj7v/2sw2uHvHhGvWu3ujz3U0aTct3bLpFRXhyD6VTRfJ\nHgXbIhlUXQ0nnxxOF2nonXf0B03SVsgbJPu7+2oz+wwwx8zeAhrOxJqZU5BO2fQOHeArXwmr2Cqb\nLiIiBeeII0Lp9Npgu/aYrMsu0+kikhdiC7bdfXX07zoz+y3QD6gxs84JaSRrm7p/4sSJnzwuLy+n\nvLw8ux3OQ7Vl0ysr4e9/T/2+2rLpFRVw7rkqmy6SbVVVVVRVVcXdjU+YWRdgGtCZsH/mf939jt1t\nUjez8cBoYAdwlbvPidr7APcDbYDZ7n51bkcjJWHlynAm9iWXNA6gW7cOH8k+/njY6DhiBBx8cDz9\nFEkiljQSM9sPaOXum82sLTAHuBEYCKx398nRBsmO7t5og2Qpfxy5YQM88khYxf7jH5t3b9++IcBW\n2XSReMWdRhItZhzg7gvN7FPAq8BQ4DLgw4RN6h3dfZyZ9QKmAycCXYC5QA93dzN7GbjS3ReY2Wzg\ndnd/Nsl7luy8LS30wQfh2KwHH4Q//CF8jHvzzfCd7zS+dutW2GcffTwrWVGQOdtm1h14nJAmUgZM\nd/efmlknYCbQFVhOWFXZmOT+kpq0VTZdpLjEHWw3FH26+Ivoq9EmdTMbB7i7T46ufxqYSJinX3D3\nXlH7xdH930zyHiU1b0ua7rkHrrginFeb6Pjj4bXX4umTlKyCzNl293eB45K0rwfOyH2P8k86ZdPb\ntoULLlDZdBHZMzM7hDAfvwR0dvcaAHdfY2a1n4EdBMxPuG1V1LYDSDxMdGXULpKe44+vH2i3agWn\nnx7SSNy1gi0FRRUk80y6ZdNHjoTzz1fZdBHZsyiF5FFCDvZmM9MmdcmNtWth1qywqnTXXY2fP/HE\ncETWAQeEXfzDhoXHIgVIwXYeqC2bPm0aPP9888umV1SEglgqmy4iqTKzMkKgXenus6LmpjapryKk\n99XqErU11Z6UNraXuBUr4Le/hd/8JuRg79oV2q+5Bg47rP61ZvDGG+GjWpEcy/Sm9tjO2U5HMeT+\npVs2/ZJLQpB9/PH6NE2k0ORDzraZTQM+cPdrEtomk2STesIGyZMIaSLPUbdB8iVgLLAA+B1wh7s/\nk+T9Cn7eljT17h3OxG7opz+F667LfX9EUlSQOdulrLo6HNXX3LLp++wTjukbNUpl00UkPWbWH7gU\n+IuZvU5IF7kemAzMNLPRRJvUAdy92sxmAtXAdmBMQuR8BfWP/msUaEsJ2bYtnAzSvn3j5847ry7Y\nNoP+/cMGowsuyG0fRXJMK9s5sHZtOB60JWXT+/cPAfZFF4UCNCJS+PJhZTvXCm3elmZ4//1Qsvip\np+C55+Dqq2HSpMbXvfoq3HADfPnLIfDu3Dn3fRVpgYI8+i9dhTBpb90KTz4ZVrFVNl1EEinYlqIw\nfz6MGQMLF9ZvP/bYxm0iBUxpJHkknbLp7dvXlU3v31952CIikuf+7d+SB9X//GfY+a9jsUQArWxn\nREvLprduDWefrbLpIqVGK9uS9zZuhBdfDGkhCxfCvHnhrOuGDjsMli+HL34RzjkHBg+Gww/XipEU\nFaWRxGTjxrqy6fPmNe/evn3DCvbw4SqbLlKKFGxL3powAWbPDlUaa4/mg3Ae9nGNatHBokXQvTu0\na5e7PorkmNJIcigTZdMrKsLZ2CIiInmnqgpeeaVx+5w5yYPtY4/NepdECp2C7T3IRNn0igooL1fZ\ndBERicn69eFj2D/8IXyNHw9Dhza+buBA+L//CykjffvCl74EZ5wBX/hC7vssUiQUbDchnbLpp58e\njuv78pe1P0RERGI0fTr86EeweHH99uefTx5sDx8eVqtPPVXnzYpkiILtBCqbLiIiBWfjxrByfeih\njZ9zbxxoQ1i9TqZHj/AlIhlT8sG2yqaLiEjB2LYtFId59VVYsAD+/Gd4662Q7jFnTuPr+/cP/5aV\nQZ8+8O//Hr5q20Uk60r2NJJ0yqYPGRICbJVNF5GW0Gkk0mKLFiXfqNiuHWzY0Ph4PveQq923L+y3\nX276KFJkdPRfM6xbBw891LKy6QMGhOP6LroIOnZs9luLiHxCwbbUs2sXvPsuvPFG+Fq0KKwCvfxy\n449Mt2+H/fevfxxW69ZwzDHwzDM6T1YkC3T03x5s3QpPPRUCbJVNFxGRvLJrV8hJXL++8XOrV8OB\nB9Zv22svOP/8EGCfcAL06xdWuvfdNzf9FZFmK8pgW2XTRUQkNh99BEuWwNtvh3zq2q9ZsxrvoG/V\nCrp2TR5sL1rUONiGcA6tiBSMogq20y2bPnJkyMdW2XQREWmSO9TUhHSOtm0bPz9wYNi82NDixcmP\nqzrqKHj//ZAKcswxcPTRYbVaFdBEikJeBttmNgj4GdAKmOLuk5u6VmXTRUTi1Zw5uyA99BC8+CIs\nXx6+VqyALVvCSvWQIY2v79Gj6WD7S19q3D5lSth9LyJFKe+CbTNrBfwCGAi8Dywws1nu/rfE62rz\nsEulbHpVVRXl5eVxdyOnNObSUIpjLiapztl55c03YeHCsDpdUxNyo1evhiuvTF7o5fnnQ0Dc0Lvv\nJn/9Xr2o6tqV8uOPhyOOgMMPh549w4p1MkUSaJfi/8sas6Qi74JtoB+wxN2XA5jZDGAoUG/iPvfc\n1F+wbduwn2TUqMItm16Kv9wac2koxTEXmZTm7LTs3Akffxzym5Olbbz8cijSsnFj+NqwIeRAV1SE\nYggN3XtRkBHEAAAGPElEQVQv3Hpr4/bTT08ebHft2ritQ4emV3puuIGq7dspnzhxt8MqNqX4/7LG\nLKnIx2D7IOC9hO9XEibzZlHZdBGRnEh9zj7nnJDvvGtXCKAvvBD+678aX3fXXfDDH4ZUja1b4V//\nCu033ACTJjW+fs4c+MEPGrf37Zu8x03lDa5enbz9nHOgUyfo1q3uS6XMRSRF+Rhsp0Vl00VE8tTT\nT9f/vqm0iq1bQ3pHQ02V+G3XLnl7shM+AI49FoYNgwMOgM6dw7+f+1xI9UjmxBPDl4hIC+RdURsz\nOxmY6O6Dou/HAZ644cbM8qvTIiLNVCxFbVKZs6N2zdsiUrCKqoKkmbUG3iJstlkN/BkY7u6LY+2Y\niIg0ojlbRGT38i6NxN13mtmVwBzqjpHSpC0ikoc0Z4uI7F7erWyLiIiIiBSLVnF3oLnMbJCZ/c3M\n3jaz6+LuTzaYWRcze8HM3jSzv5jZ2Ki9o5nNMbO3zOxZM2sfd18zycxamdlrZvZE9H2xj7e9mT1i\nZoujn/VJJTDmb5vZX83sDTObbmZ7F9uYzWyKmdWY2RsJbU2O0czGm9mS6PfgzHh6nT2as4vnd7uh\nUpuzofTmbc3ZmZmzCyrYTiiecBbQGxhuZk1sHy9oO4Br3L038AXgimic44C57n4E8AIwPsY+ZsNV\nQHXC98U+3tuB2e5+JHAs4Vzioh2zmR0IfAvo4+7HENLYhlN8Y76PMEclSjpGM+sFDAOOBM4G7jKz\notg4CZqzKb7f7YZKbc6GEpq3NWdnbs4uqGCbhOIJ7r4dqC2eUFTcfY27L4webwYWA10IY50aXTYV\nOC+eHmaemXUBzgF+ndBczONtB/y7u98H4O473H0TRTzmSGugrZmVAfsCqyiyMbv7PGBDg+amxjgE\nmBH9/JcBS2hBXYE8pjm7iH63E5XanA0lO29rzs7AnF1owXay4gkHxdSXnDCzQ4DjgJeAzu5eA2Fy\nB5qozFCQbgOuBRI3ERTzeLsDH5jZfdHHsL8ys/0o4jG7+/vALcAKwoS9yd3nUsRjTvDZJsbYcE5b\nRXHNaZqzi/d3u9TmbCixeVtzdubm7EILtkuKmX0KeBS4KlotabibtSh2t5rZfwA10crQ7j6OKYrx\nRsqAPsCd7t4H+CfhY6ui/BkDmFkHwmpBN+BAwmrJpRTxmHejFMZYcjRnN1IU401QUvO25ux60hpj\noQXbq4CDE77vErUVnegjm0eBSnefFTXXmFnn6PkDgLVx9S/D+gNDzGwp8BBwuplVAmuKdLwQVvje\nc/dXou8fI0zixfozBjgDWOru6919J/A4cArFPeZaTY1xFdA14bpim9M0Zxfn73YpztlQevO25mwy\nM2cXWrC9ADjMzLqZ2d7AxcATMfcpW+4Fqt399oS2J4CvRo9HAbMa3lSI3P16dz/Y3Q8l/ExfcPeR\nwJMU4XgBoo+n3jOzw6OmgcCbFOnPOLICONnM2kQbSgYSNlcV45iN+it+TY3xCeDiaId/d+AwQlGY\nYqE5u/h+t0tyzoaSnLc1Zwfpz9nuXlBfwCBCtbIlwLi4+5OlMfYHdgILgdeB16JxdwLmRuOfA3SI\nu69ZGPupwBPR46IeL2En+4Lo5/wboH0JjHkCYfPYG4RNJ3sV25iBB4H3gW2EP1aXAR2bGiNhl/s7\n0X+XM+Pufxb+e2jOLpLf7SbGXjJzdjTGkpq3NWdnZs5WURsRERERkSwptDQSEREREZGCoWBbRERE\nRCRLFGyLiIiIiGSJgm0RERERkSxRsC0iIiIikiUKtkVEREREskTBtoiIiIhIlijYFhERERHJEgXb\nIhEzO8HMFkVlWNua2V/NrFfc/RIRkcY0Z0uhUAVJkQRm9kNg3+jrPXefHHOXRESkCZqzpRAo2BZJ\nYGZ7AQuALcAprv9BRETyluZsKQRKIxGp79+ATwH7A21i7ouIiOye5mzJe1rZFklgZrOAh4DuwIHu\n/q2YuyQiIk3QnC2FoCzuDojkCzMbCfzL3WeYWSvgj2ZW7u5VMXdNREQa0JwthUIr2yIiIiIiWaKc\nbRERERGRLFGwLSIiIiKSJQq2RURERESyRMG2iIiIiEiWKNgWEREREckSBdsiIiIiIlmiYFtERERE\nJEsUbIuIiIiIZMn/A0B/LV+00DLqAAAAAElFTkSuQmCC\n",
"text/plain": [
""
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"fig, axes = plt.subplots(nrows=1, ncols=2,figsize=(12,2))\n",
"\n",
"axes[0].plot(x,y,color=\"blue\", lw=5)\n",
"axes[0].set_xlabel('x')\n",
"axes[0].set_ylabel('y')\n",
"\n",
"axes[1].plot(x,z,color=\"red\", lw=3, ls='--')\n",
"axes[1].set_xlabel('x')\n",
"axes[1].set_ylabel('z')"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Great Job!"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.5.1"
}
},
"nbformat": 4,
"nbformat_minor": 0
}