/* * R : A Computer Language for Statistical Data Analysis * Copyright (C) 2001-2014 The R Core Team * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, a copy is available at * https://www.R-project.org/Licenses/ * * Most of this file is C translations of Fortran routines in * QUADPACK: the latter is part of SLATEC 'and therefore in the public * domain' (https://en.wikipedia.org/wiki/QUADPACK). * * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include /* for fmax2, fmin2, imin2 */ #include /* exporting the API , particularly */ /*--- typedef void integr_fn(double *x, int n, void *ex) --- * vectorizing function f(x[1:n], ...) -> x[] {overwriting x[]}. * Vectorization can be used to speed up the integrand * instead of calling it n times. */ /* f2c-ed translations + modifications of QUADPACK functions */ static void rdqagie(integr_fn f, void *ex, double *, int *, double * , double *, int *, double *, double *, int *, int *, double *, double *, double *, double *, int *, int *); static void rdqk15i(integr_fn f, void *ex, double *, int *, double * , double *, double *, double *, double *, double *); static void rdqagse(integr_fn f, void *ex, double *, double *, double *, double *, int *, double *, double *, int *, int *, double *, double *, double *, double *, int *, int *); static void rdqk21(integr_fn f, void *ex, double *, double *, double *, double *, double *, double *); static void rdqpsrt(int *, int *, int *, double *, double *, int *, int *); static void rdqelg(int *, double *, double *, double *, double *, int *); /* Table of constant values */ static double c_b6 = 0.; static double c_b7 = 1.; void Rdqagi(integr_fn f, void *ex, double *bound, int *inf, double *epsabs, double *epsrel, double *result, double *abserr, int *neval, int *ier, int *limit, int *lenw, int *last, int *iwork, double *work) { int l1, l2, l3; /* ***begin prologue dqagi ***date written 800101 (yymmdd) ***revision date 830518 (yymmdd) ***category no. h2a3a1,h2a4a1 ***keywords automatic integrator, infinite intervals, general-purpose, transformation, extrapolation, globally adaptive ***author piessens,robert,appl. math. & progr. div. - k.u.leuven de doncker,elise,appl. math. & progr. div. -k.u.leuven ***purpose the routine calculates an approximation result to a given integral i = integral of f over (bound,+infinity) or i = integral of f over (-infinity,bound) or i = integral of f over (-infinity,+infinity) hopefully satisfying following claim for accuracy abs(i-result) <= max(epsabs,epsrel*abs(i)). ***description integration over infinite intervals standard fortran subroutine parameters on entry f - double precision function subprogram defining the integrand function f(x). the actual name for f needs to be declared e x t e r n a l in the driver program. bound - double precision finite bound of integration range (has no meaning if interval is doubly-infinite) inf - int indicating the kind of integration range involved inf = 1 corresponds to (bound,+infinity), inf = -1 to (-infinity,bound), inf = 2 to (-infinity,+infinity). epsabs - double precision absolute accuracy requested epsrel - double precision relative accuracy requested if epsabs <= 0 and epsrel < max(50*rel.mach.acc.,0.5d-28), the routine will end with ier = 6. on return result - double precision approximation to the integral abserr - double precision estimate of the modulus of the absolute error, which should equal or exceed abs(i-result) neval - int number of integrand evaluations ier - int ier = 0 normal and reliable termination of the routine. it is assumed that the requested accuracy has been achieved. - ier > 0 abnormal termination of the routine. the estimates for result and error are less reliable. it is assumed that the requested accuracy has not been achieved. error messages ier = 1 maximum number of subdivisions allowed has been achieved. one can allow more subdivisions by increasing the value of limit (and taking the according dimension adjustments into account). however, if this yields no improvement it is advised to analyze the integrand in order to determine the integration difficulties. if the position of a local difficulty can be determined (e.g. singularity, discontinuity within the interval) one will probably gain from splitting up the interval at this point and calling the integrator on the subranges. if possible, an appropriate special-purpose integrator should be used, which is designed for handling the type of difficulty involved. = 2 the occurrence of roundoff error is detected, which prevents the requested tolerance from being achieved. the error may be under-estimated. = 3 extremely bad integrand behaviour occurs at some points of the integration interval. = 4 the algorithm does not converge. roundoff error is detected in the extrapolation table. it is assumed that the requested tolerance cannot be achieved, and that the returned result is the best which can be obtained. = 5 the integral is probably divergent, or slowly convergent. it must be noted that divergence can occur with any other value of ier. = 6 the input is invalid, because (epsabs <= 0 and epsrel < max(50*rel.mach.acc.,0.5d-28)) or limit < 1 or leniw < limit*4. result, abserr, neval, last are set to zero. exept when limit or leniw is invalid, iwork(1), work(limit*2+1) and work(limit*3+1) are set to zero, work(1) is set to a and work(limit+1) to b. dimensioning parameters limit - int dimensioning parameter for iwork limit determines the maximum number of subintervals in the partition of the given integration interval (a,b), limit >= 1. if limit < 1, the routine will end with ier = 6. lenw - int dimensioning parameter for work lenw must be at least limit*4. if lenw < limit*4, the routine will end with ier = 6. last - int on return, last equals the number of subintervals produced in the subdivision process, which determines the number of significant elements actually in the work arrays. work arrays iwork - int vector of dimension at least limit, the first k elements of which contain pointers to the error estimates over the subintervals, such that work(limit*3+iwork(1)),... , work(limit*3+iwork(k)) form a decreasing sequence, with k = last if last <= (limit/2+2), and k = limit+1-last otherwise work - double precision vector of dimension at least lenw on return work(1), ..., work(last) contain the left end points of the subintervals in the partition of (a,b), work(limit+1), ..., work(limit+last) contain the right end points, work(limit*2+1), ...,work(limit*2+last) contain the integral approximations over the subintervals, work(limit*3+1), ..., work(limit*3) contain the error estimates. ***routines called dqagie ***end prologue dqagi */ *ier = 6; *neval = 0; *last = 0; *result = 0.; *abserr = 0.; if (*limit < 1 || *lenw < *limit << 2) return; l1 = *limit; l2 = *limit + l1; l3 = *limit + l2; rdqagie(f, ex, bound, inf, epsabs, epsrel, limit, result, abserr, neval, ier, work, &work[l1], &work[l2], &work[l3], iwork, last); return; } /* Rdqagi */ static void rdqagie(integr_fn f, void *ex, double *bound, int *inf, double * epsabs, double *epsrel, int *limit, double *result, double *abserr, int *neval, int *ier, double *alist, double *blist, double *rlist, double *elist, int * iord, int *last) { /* Local variables */ double area, dres; int ksgn; double boun; int nres; double area1, area2, area12; int k; double small = 0.0, erro12; int ierro; double a1, a2, b1, b2, defab1, defab2, oflow; int ktmin, nrmax; double uflow; Rboolean noext; int iroff1, iroff2, iroff3; double res3la[3], error1, error2; int id; double rlist2[52]; int numrl2; double defabs, epmach, erlarg = 0.0, abseps, correc = 0.0, errbnd, resabs; int jupbnd; double erlast, errmax; int maxerr; double reseps; Rboolean extrap; double ertest = 0.0, errsum; /**begin prologue dqagie ***date written 800101 (yymmdd) ***revision date 830518 (yymmdd) ***category no. h2a3a1,h2a4a1 ***keywords automatic integrator, infinite intervals, general-purpose, transformation, extrapolation, globally adaptive ***author piessens,robert,appl. math & progr. div - k.u.leuven de doncker,elise,appl. math & progr. div - k.u.leuven ***purpose the routine calculates an approximation result to a given integral i = integral of f over (bound,+infinity) or i = integral of f over (-infinity,bound) or i = integral of f over (-infinity,+infinity), hopefully satisfying following claim for accuracy abs(i-result) <= max(epsabs,epsrel*abs(i)) ***description integration over infinite intervals standard fortran subroutine f - double precision function subprogram defining the integrand function f(x). the actual name for f needs to be declared e x t e r n a l in the driver program. bound - double precision finite bound of integration range (has no meaning if interval is doubly-infinite) inf - double precision indicating the kind of integration range involved inf = 1 corresponds to (bound,+infinity), inf = -1 to (-infinity,bound), inf = 2 to (-infinity,+infinity). epsabs - double precision absolute accuracy requested epsrel - double precision relative accuracy requested if epsabs <= 0 and epsrel < max(50*rel.mach.acc.,0.5d-28), the routine will end with ier = 6. limit - int gives an upper bound on the number of subintervals in the partition of (a,b), limit >= 1 on return result - double precision approximation to the integral abserr - double precision estimate of the modulus of the absolute error, which should equal or exceed abs(i-result) neval - int number of integrand evaluations ier - int ier = 0 normal and reliable termination of the routine. it is assumed that the requested accuracy has been achieved. - ier > 0 abnormal termination of the routine. the estimates for result and error are less reliable. it is assumed that the requested accuracy has not been achieved. error messages ier = 1 maximum number of subdivisions allowed has been achieved. one can allow more subdivisions by increasing the value of limit (and taking the according dimension adjustments into account). however,if this yields no improvement it is advised to analyze the integrand in order to determine the integration difficulties. if the position of a local difficulty can be determined (e.g. singularity, discontinuity within the interval) one will probably gain from splitting up the interval at this point and calling the integrator on the subranges. if possible, an appropriate special-purpose integrator should be used, which is designed for handling the type of difficulty involved. = 2 the occurrence of roundoff error is detected, which prevents the requested tolerance from being achieved. the error may be under-estimated. = 3 extremely bad integrand behaviour occurs at some points of the integration interval. = 4 the algorithm does not converge. roundoff error is detected in the extrapolation table. it is assumed that the requested tolerance cannot be achieved, and that the returned result is the best which can be obtained. = 5 the integral is probably divergent, or slowly convergent. it must be noted that divergence can occur with any other value of ier. = 6 the input is invalid, because (epsabs <= 0 and epsrel < max(50*rel.mach.acc.,0.5d-28), result, abserr, neval, last, rlist(1), elist(1) and iord(1) are set to zero. alist(1) and blist(1) are set to 0 and 1 respectively. alist - double precision vector of dimension at least limit, the first last elements of which are the left end points of the subintervals in the partition of the transformed integration range (0,1). blist - double precision vector of dimension at least limit, the first last elements of which are the right end points of the subintervals in the partition of the transformed integration range (0,1). rlist - double precision vector of dimension at least limit, the first last elements of which are the integral approximations on the subintervals elist - double precision vector of dimension at least limit, the first last elements of which are the moduli of the absolute error estimates on the subintervals iord - int vector of dimension limit, the first k elements of which are pointers to the error estimates over the subintervals, such that elist(iord(1)), ..., elist(iord(k)) form a decreasing sequence, with k = last if last <= (limit/2+2), and k = limit+1-last otherwise last - int number of subintervals actually produced in the subdivision process ***routines called dqelg,dqk15i,dqpsrt ***end prologue dqagie the dimension of rlist2 is determined by the value of limexp in subroutine dqelg. list of major variables ----------------------- alist - list of left end points of all subintervals considered up to now blist - list of right end points of all subintervals considered up to now rlist(i) - approximation to the integral over (alist(i),blist(i)) rlist2 - array of dimension at least (limexp+2), containing the part of the epsilon table wich is still needed for further computations elist(i) - error estimate applying to rlist(i) maxerr - pointer to the interval with largest error estimate errmax - elist(maxerr) erlast - error on the interval currently subdivided (before that subdivision has taken place) area - sum of the integrals over the subintervals errsum - sum of the errors over the subintervals errbnd - requested accuracy max(epsabs,epsrel* abs(result)) *****1 - variable for the left subinterval *****2 - variable for the right subinterval last - index for subdivision nres - number of calls to the extrapolation routine numrl2 - number of elements currently in rlist2. if an appropriate approximation to the compounded integral has been obtained, it is put in rlist2(numrl2) after numrl2 has been increased by one. small - length of the smallest interval considered up to now, multiplied by 1.5 erlarg - sum of the errors over the intervals larger than the smallest interval considered up to now extrap - logical variable denoting that the routine is attempting to perform extrapolation. i.e. before subdividing the smallest interval we try to decrease the value of erlarg. noext - logical variable denoting that extrapolation is no longer allowed (true-value) machine dependent constants --------------------------- epmach is the largest relative spacing. uflow is the smallest positive magnitude. oflow is the largest positive magnitude. */ /* ***first executable statement dqagie */ /* Parameter adjustments */ --iord; --elist; --rlist; --blist; --alist; /* Function Body */ epmach = DBL_EPSILON; /* test on validity of parameters */ /* ----------------------------- */ *ier = 0; *neval = 0; *last = 0; *result = 0.; *abserr = 0.; alist[1] = 0.; blist[1] = 1.; rlist[1] = 0.; elist[1] = 0.; iord[1] = 0; if (*epsabs <= 0. && (*epsrel < fmax2(epmach * 50., 5e-29))) *ier = 6; if (*ier == 6) return; /* first approximation to the integral */ /* ----------------------------------- */ /* determine the interval to be mapped onto (0,1). if inf = 2 the integral is computed as i = i1+i2, where i1 = integral of f over (-infinity,0), i2 = integral of f over (0,+infinity). */ boun = *bound; if (*inf == 2) { boun = 0.; } rdqk15i(f, ex, &boun, inf, &c_b6, &c_b7, result, abserr, &defabs, &resabs); /* test on accuracy */ *last = 1; rlist[1] = *result; elist[1] = *abserr; iord[1] = 1; dres = fabs(*result); errbnd = fmax2(*epsabs, *epsrel * dres); if (*abserr <= epmach * 100. * defabs && *abserr > errbnd) *ier = 2; if (*limit == 1) *ier = 1; if (*ier != 0 || (*abserr <= errbnd && *abserr != resabs) || *abserr == 0.) goto L130; /* initialization */ /* -------------- */ uflow = DBL_MIN; oflow = DBL_MAX; rlist2[0] = *result; errmax = *abserr; maxerr = 1; area = *result; errsum = *abserr; *abserr = oflow; nrmax = 1; nres = 0; ktmin = 0; numrl2 = 2; extrap = FALSE; noext = FALSE; ierro = 0; iroff1 = 0; iroff2 = 0; iroff3 = 0; ksgn = -1; if (dres >= (1. - epmach * 50.) * defabs) { ksgn = 1; } /* main do-loop */ /* ------------ */ for (*last = 2; *last <= *limit; ++(*last)) { /* bisect the subinterval with nrmax-th largest error estimate. */ a1 = alist[maxerr]; b1 = (alist[maxerr] + blist[maxerr]) * .5; a2 = b1; b2 = blist[maxerr]; erlast = errmax; rdqk15i(f, ex, &boun, inf, &a1, &b1, &area1, &error1, &resabs, &defab1); rdqk15i(f, ex, &boun, inf, &a2, &b2, &area2, &error2, &resabs, &defab2); /* improve previous approximations to integral and error and test for accuracy. */ area12 = area1 + area2; erro12 = error1 + error2; errsum = errsum + erro12 - errmax; area = area + area12 - rlist[maxerr]; if (!(defab1 == error1 || defab2 == error2)) { if (fabs(rlist[maxerr] - area12) <= fabs(area12) * 1e-5 && erro12 >= errmax * .99) { if (extrap) ++iroff2; else /* if (! extrap) */ ++iroff1; } if (*last > 10 && erro12 > errmax) ++iroff3; } rlist[maxerr] = area1; rlist[*last] = area2; errbnd = fmax2(*epsabs, *epsrel * fabs(area)); /* test for roundoff error and eventually set error flag. */ if (iroff1 + iroff2 >= 10 || iroff3 >= 20) *ier = 2; if (iroff2 >= 5) ierro = 3; /* set error flag in the case that the number of subintervals equals limit. */ if (*last == *limit) *ier = 1; /* set error flag in the case of bad integrand behaviour at some points of the integration range. */ if (fmax2(fabs(a1), fabs(b2)) <= (epmach * 100. + 1.) * (fabs(a2) + uflow * 1e3)) { *ier = 4; } /* append the newly-created intervals to the list. */ if (error2 <= error1) { alist[*last] = a2; blist[maxerr] = b1; blist[*last] = b2; elist[maxerr] = error1; elist[*last] = error2; } else { alist[maxerr] = a2; alist[*last] = a1; blist[*last] = b1; rlist[maxerr] = area2; rlist[*last] = area1; elist[maxerr] = error2; elist[*last] = error1; } /* call subroutine dqpsrt to maintain the descending ordering in the list of error estimates and select the subinterval with nrmax-th largest error estimate (to be bisected next). */ rdqpsrt(limit, last, &maxerr, &errmax, &elist[1], &iord[1], &nrmax); if (errsum <= errbnd) { goto L115; } if (*ier != 0) break; if (*last == 2) { /* L80: */ small = .375; erlarg = errsum; ertest = errbnd; rlist2[1] = area; continue; } if (noext) continue; erlarg -= erlast; if (fabs(b1 - a1) > small) { erlarg += erro12; } if (!extrap) { /* test whether the interval to be bisected next is the smallest interval. */ if (fabs(blist[maxerr] - alist[maxerr]) > small) { continue; } extrap = TRUE; nrmax = 2; } if (ierro != 3 && erlarg > ertest) { /* the smallest interval has the largest error. before bisecting decrease the sum of the errors over the larger intervals (erlarg) and perform extrapolation. */ id = nrmax; jupbnd = *last; if (*last > *limit / 2 + 2) { jupbnd = *limit + 3 - *last; } for (k = id; k <= jupbnd; ++k) { maxerr = iord[nrmax]; errmax = elist[maxerr]; if (fabs(blist[maxerr] - alist[maxerr]) > small) { goto L90; } ++nrmax; /* L50: */ } } /* perform extrapolation. L60: */ ++numrl2; rlist2[numrl2 - 1] = area; rdqelg(&numrl2, rlist2, &reseps, &abseps, res3la, &nres); ++ktmin; if (ktmin > 5 && *abserr < errsum * .001) { *ier = 5; } if (abseps >= *abserr) { goto L70; } ktmin = 0; *abserr = abseps; *result = reseps; correc = erlarg; ertest = fmax2(*epsabs, *epsrel * fabs(reseps)); if (*abserr <= ertest) { break; } /* prepare bisection of the smallest interval. */ L70: if (numrl2 == 1) { noext = TRUE; } if (*ier == 5) { break; } maxerr = iord[1]; errmax = elist[maxerr]; nrmax = 1; extrap = FALSE; small *= .5; erlarg = errsum; L90: ; } /* L100: set final result and error estimate. */ /* ------------------------------------ */ if (*abserr == oflow) { goto L115; } if (*ier + ierro == 0) { goto L110; } if (ierro == 3) { *abserr += correc; } if (*ier == 0) { *ier = 3; } if (*result == 0. || area == 0.) { if (*abserr > errsum) goto L115; if (area == 0.) goto L130; } else { /* L105: */ if (*abserr / fabs(*result) > errsum / fabs(area)) { goto L115; } } /* test on divergence */ L110: if (ksgn == -1 && fmax2(fabs(*result), fabs(area)) <= defabs * .01) { goto L130; } if (.01 > *result / area || *result / area > 100. || errsum > fabs(area)) { *ier = 6; } goto L130; /* compute global integral sum. */ L115: *result = 0.; for (k = 1; k <= *last; ++k) *result += rlist[k]; *abserr = errsum; L130: *neval = *last * 30 - 15; if (*inf == 2) { *neval <<= 1; } if (*ier > 2) { --(*ier); } return; } /* rdqagie_ */ void Rdqags(integr_fn f, void *ex, double *a, double *b, double *epsabs, double *epsrel, double *result, double *abserr, int *neval, int *ier, int *limit, int *lenw, int *last, int *iwork, double *work) { int l1, l2, l3; /* ***begin prologue dqags ***date written 800101 (yymmdd) ***revision date 830518 (yymmdd) ***category no. h2a1a1 ***keywords automatic integrator, general-purpose, (end-point) singularities, extrapolation, globally adaptive ***author piessens,robert,appl. math. & progr. div. - k.u.leuven de doncker,elise,appl. math. & prog. div. - k.u.leuven ***purpose the routine calculates an approximation result to a given definite integral i = integral of f over (a,b), hopefully satisfying following claim for accuracy abs(i-result) <= max(epsabs,epsrel*abs(i)). ***description computation of a definite integral standard fortran subroutine double precision version parameters on entry f - double precision function subprogram defining the integrand function f(x). the actual name for f needs to be declared e x t e r n a l in the driver program. a - double precision lower limit of integration b - double precision upper limit of integration epsabs - double precision absolute accuracy requested epsrel - double precision relative accuracy requested if epsabs <= 0 and epsrel < max(50*rel.mach.acc.,0.5d-28), the routine will end with ier = 6. on return result - double precision approximation to the integral abserr - double precision estimate of the modulus of the absolute error, which should equal or exceed abs(i-result) neval - int number of integrand evaluations ier - int ier = 0 normal and reliable termination of the routine. it is assumed that the requested accuracy has been achieved. ier > 0 abnormal termination of the routine the estimates for integral and error are less reliable. it is assumed that the requested accuracy has not been achieved. error messages ier = 1 maximum number of subdivisions allowed has been achieved. one can allow more sub- divisions by increasing the value of limit (and taking the according dimension adjustments into account. however, if this yields no improvement it is advised to analyze the integrand in order to determine the integration difficulties. if the position of a local difficulty can be determined (e.g. singularity, discontinuity within the interval) one will probably gain from splitting up the interval at this point and calling the integrator on the subranges. if possible, an appropriate special-purpose integrator should be used, which is designed for handling the type of difficulty involved. = 2 the occurrence of roundoff error is detec- ted, which prevents the requested tolerance from being achieved. the error may be under-estimated. = 3 extremely bad integrand behaviour occurs at some points of the integration interval. = 4 the algorithm does not converge. roundoff error is detected in the extrapolation table. it is presumed that the requested tolerance cannot be achieved, and that the returned result is the best which can be obtained. = 5 the integral is probably divergent, or slowly convergent. it must be noted that divergence can occur with any other value of ier. = 6 the input is invalid, because (epsabs <= 0 and epsrel < max(50*rel.mach.acc.,0.5d-28) or limit < 1 or lenw < limit*4. result, abserr, neval, last are set to zero.except when limit or lenw is invalid, iwork(1), work(limit*2+1) and work(limit*3+1) are set to zero, work(1) is set to a and work(limit+1) to b. dimensioning parameters limit - int dimensioning parameter for iwork limit determines the maximum number of subintervals in the partition of the given integration interval (a,b), limit >= 1. if limit < 1, the routine will end with ier = 6. lenw - int dimensioning parameter for work lenw must be at least limit*4. if lenw < limit*4, the routine will end with ier = 6. last - int on return, last equals the number of subintervals produced in the subdivision process, detemines the number of significant elements actually in the work arrays. work arrays iwork - int vector of dimension at least limit, the first k elements of which contain pointers to the error estimates over the subintervals such that work(limit*3+iwork(1)),... , work(limit*3+iwork(k)) form a decreasing sequence, with k = last if last <= (limit/2+2), and k = limit+1-last otherwise work - double precision vector of dimension at least lenw on return work(1), ..., work(last) contain the left end-points of the subintervals in the partition of (a,b), work(limit+1), ..., work(limit+last) contain the right end-points, work(limit*2+1), ..., work(limit*2+last) contain the integral approximations over the subintervals, work(limit*3+1), ..., work(limit*3+last) contain the error estimates. ***routines called dqagse ***end prologue dqags */ /* check validity of limit and lenw. */ *ier = 6; *neval = 0; *last = 0; *result = 0.; *abserr = 0.; if (*limit < 1 || *lenw < *limit *4) return; /* prepare call for dqagse. */ l1 = *limit; l2 = *limit + l1; l3 = *limit + l2; rdqagse(f, ex, a, b, epsabs, epsrel, limit, result, abserr, neval, ier, work, &work[l1], &work[l2], &work[l3], iwork, last); return; } /* rdqags_ */ static void rdqagse(integr_fn f, void *ex, double *a, double *b, double * epsabs, double *epsrel, int *limit, double *result, double *abserr, int *neval, int *ier, double *alist, double *blist, double *rlist, double *elist, int * iord, int *last) { /* Local variables */ Rboolean noext, extrap; int k,ksgn, nres; int ierro; int ktmin, nrmax; int iroff1, iroff2, iroff3; int id; int numrl2; int jupbnd; int maxerr; double res3la[3]; double rlist2[52]; double abseps, area, area1, area2, area12, dres, epmach; double a1, a2, b1, b2, defabs, defab1, defab2, oflow, uflow, resabs, reseps; double error1, error2, erro12, errbnd, erlast, errmax, errsum; double correc = 0.0, erlarg = 0.0, ertest = 0.0, small = 0.0; /* ***begin prologue dqagse ***date written 800101 (yymmdd) ***revision date 830518 (yymmdd) ***category no. h2a1a1 ***keywords automatic integrator, general-purpose, (end point) singularities, extrapolation, globally adaptive ***author piessens,robert,appl. math. & progr. div. - k.u.leuven de doncker,elise,appl. math. & progr. div. - k.u.leuven ***purpose the routine calculates an approximation result to a given definite integral i = integral of f over (a,b), hopefully satisfying following claim for accuracy abs(i-result) <= max(epsabs,epsrel*abs(i)). ***description computation of a definite integral standard fortran subroutine double precision version parameters on entry f - double precision function subprogram defining the integrand function f(x). the actual name for f needs to be declared e x t e r n a l in the driver program. a - double precision lower limit of integration b - double precision upper limit of integration epsabs - double precision absolute accuracy requested epsrel - double precision relative accuracy requested if epsabs <= 0 and epsrel < max(50*rel.mach.acc.,0.5d-28), the routine will end with ier = 6. limit - int gives an upperbound on the number of subintervals in the partition of (a,b) on return result - double precision approximation to the integral abserr - double precision estimate of the modulus of the absolute error, which should equal or exceed abs(i-result) neval - int number of integrand evaluations ier - int ier = 0 normal and reliable termination of the routine. it is assumed that the requested accuracy has been achieved. ier > 0 abnormal termination of the routine the estimates for integral and error are less reliable. it is assumed that the requested accuracy has not been achieved. error messages = 1 maximum number of subdivisions allowed has been achieved. one can allow more sub- divisions by increasing the value of limit (and taking the according dimension adjustments into account). however, if this yields no improvement it is advised to analyze the integrand in order to determine the integration difficulties. if the position of a local difficulty can be determined (e.g. singularity, discontinuity within the interval) one will probably gain from splitting up the interval at this point and calling the integrator on the subranges. if possible, an appropriate special-purpose integrator should be used, which is designed for handling the type of difficulty involved. = 2 the occurrence of roundoff error is detec- ted, which prevents the requested tolerance from being achieved. the error may be under-estimated. = 3 extremely bad integrand behaviour occurs at some points of the integration interval. = 4 the algorithm does not converge. roundoff error is detected in the extrapolation table. it is presumed that the requested tolerance cannot be achieved, and that the returned result is the best which can be obtained. = 5 the integral is probably divergent, or slowly convergent. it must be noted that divergence can occur with any other value of ier. = 6 the input is invalid, because epsabs <= 0 and epsrel < max(50*rel.mach.acc.,0.5d-28). result, abserr, neval, last, rlist(1), iord(1) and elist(1) are set to zero. alist(1) and blist(1) are set to a and b respectively. alist - double precision vector of dimension at least limit, the first last elements of which are the left end points of the subintervals in the partition of the given integration range (a,b) blist - double precision vector of dimension at least limit, the first last elements of which are the right end points of the subintervals in the partition of the given integration range (a,b) rlist - double precision vector of dimension at least limit, the first last elements of which are the integral approximations on the subintervals elist - double precision vector of dimension at least limit, the first last elements of which are the moduli of the absolute error estimates on the subintervals iord - int vector of dimension at least limit, the first k elements of which are pointers to the error estimates over the subintervals, such that elist(iord(1)), ..., elist(iord(k)) form a decreasing sequence, with k = last if last <= (limit/2+2), and k = limit+1-last otherwise last - int number of subintervals actually produced in the subdivision process ***references (none) ***routines called dqelg,dqk21,dqpsrt ***end prologue dqagse the dimension of rlist2 is determined by the value of limexp in subroutine dqelg (rlist2 should be of dimension (limexp+2) at least). list of major variables ----------------------- alist - list of left end points of all subintervals considered up to now blist - list of right end points of all subintervals considered up to now rlist(i) - approximation to the integral over (alist(i),blist(i)) rlist2 - array of dimension at least limexp+2 containing the part of the epsilon table which is still needed for further computations elist(i) - error estimate applying to rlist(i) maxerr - pointer to the interval with largest error estimate errmax - elist(maxerr) erlast - error on the interval currently subdivided (before that subdivision has taken place) area - sum of the integrals over the subintervals errsum - sum of the errors over the subintervals errbnd - requested accuracy max(epsabs,epsrel* abs(result)) *****1 - variable for the left interval *****2 - variable for the right interval last - index for subdivision nres - number of calls to the extrapolation routine numrl2 - number of elements currently in rlist2. if an appropriate approximation to the compounded integral has been obtained it is put in rlist2(numrl2) after numrl2 has been increased by one. small - length of the smallest interval considered up to now, multiplied by 1.5 erlarg - sum of the errors over the intervals larger than the smallest interval considered up to now extrap - logical variable denoting that the routine is attempting to perform extrapolation i.e. before subdividing the smallest interval we try to decrease the value of erlarg. noext - logical variable denoting that extrapolation is no longer allowed (true value) machine dependent constants --------------------------- epmach is the largest relative spacing. uflow is the smallest positive magnitude. oflow is the largest positive magnitude. */ /* ***first executable statement dqagse */ /* Parameter adjustments */ --iord; --elist; --rlist; --blist; --alist; /* Function Body */ epmach = DBL_EPSILON; /* test on validity of parameters */ /* ------------------------------ */ *ier = 0; *neval = 0; *last = 0; *result = 0.; *abserr = 0.; alist[1] = *a; blist[1] = *b; rlist[1] = 0.; elist[1] = 0.; if (*epsabs <= 0. && *epsrel < fmax2(epmach * 50., 5e-29)) { *ier = 6; return; } /* first approximation to the integral */ /* ----------------------------------- */ uflow = DBL_MIN; oflow = DBL_MAX; ierro = 0; rdqk21(f, ex, a, b, result, abserr, &defabs, &resabs); /* test on accuracy. */ dres = fabs(*result); errbnd = fmax2(*epsabs, *epsrel * dres); *last = 1; rlist[1] = *result; elist[1] = *abserr; iord[1] = 1; if (*abserr <= epmach * 100. * defabs && *abserr > errbnd) *ier = 2; if (*limit == 1) *ier = 1; if (*ier != 0 || (*abserr <= errbnd && *abserr != resabs) || *abserr == 0.) goto L140; /* initialization */ /* -------------- */ rlist2[0] = *result; errmax = *abserr; maxerr = 1; area = *result; errsum = *abserr; *abserr = oflow; nrmax = 1; nres = 0; numrl2 = 2; ktmin = 0; extrap = FALSE; noext = FALSE; iroff1 = 0; iroff2 = 0; iroff3 = 0; ksgn = -1; if (dres >= (1. - epmach * 50.) * defabs) { ksgn = 1; } /* main do-loop */ /* ------------ */ for (*last = 2; *last <= *limit; ++(*last)) { /* bisect the subinterval with the nrmax-th largest error estimate. */ a1 = alist[maxerr]; b1 = (alist[maxerr] + blist[maxerr]) * .5; a2 = b1; b2 = blist[maxerr]; erlast = errmax; rdqk21(f, ex, &a1, &b1, &area1, &error1, &resabs, &defab1); rdqk21(f, ex, &a2, &b2, &area2, &error2, &resabs, &defab2); /* improve previous approximations to integral and error and test for accuracy. */ area12 = area1 + area2; erro12 = error1 + error2; errsum = errsum + erro12 - errmax; area = area + area12 - rlist[maxerr]; if (!(defab1 == error1 || defab2 == error2)) { if (fabs(rlist[maxerr] - area12) <= fabs(area12) * 1e-5 && erro12 >= errmax * .99) { if (extrap) ++iroff2; else /* if(! extrap) */ ++iroff1; } if (*last > 10 && erro12 > errmax) ++iroff3; } rlist[maxerr] = area1; rlist[*last] = area2; errbnd = fmax2(*epsabs, *epsrel * fabs(area)); /* test for roundoff error and eventually set error flag. */ if (iroff1 + iroff2 >= 10 || iroff3 >= 20) *ier = 2; if (iroff2 >= 5) ierro = 3; /* set error flag in the case that the number of subintervals equals limit. */ if (*last == *limit) *ier = 1; /* set error flag in the case of bad integrand behaviour at a point of the integration range. */ if (fmax2(fabs(a1), fabs(b2)) <= (epmach * 100. + 1.) * (fabs(a2) + uflow * 1e3)) { *ier = 4; } /* append the newly-created intervals to the list. */ if (error2 > error1) { alist[maxerr] = a2; alist[*last] = a1; blist[*last] = b1; rlist[maxerr] = area2; rlist[*last] = area1; elist[maxerr] = error2; elist[*last] = error1; } else { alist[*last] = a2; blist[maxerr] = b1; blist[*last] = b2; elist[maxerr] = error1; elist[*last] = error2; } /* call subroutine dqpsrt to maintain the descending ordering in the list of error estimates and select the subinterval with nrmax-th largest error estimate (to be bisected next). */ /*L30:*/ rdqpsrt(limit, last, &maxerr, &errmax, &elist[1], &iord[1], &nrmax); if (errsum <= errbnd) goto L115;/* ***jump out of do-loop */ if (*ier != 0) break; if (*last == 2) { /* L80: */ small = fabs(*b - *a) * .375; erlarg = errsum; ertest = errbnd; rlist2[1] = area; continue; } if (noext) continue; erlarg -= erlast; if (fabs(b1 - a1) > small) { erlarg += erro12; } if (!extrap) { /* test whether the interval to be bisected next is the smallest interval. */ if (fabs(blist[maxerr] - alist[maxerr]) > small) { continue; } extrap = TRUE; nrmax = 2; } if (ierro != 3 && erlarg > ertest) { /* the smallest interval has the largest error. before bisecting decrease the sum of the errors over the larger intervals (erlarg) and perform extrapolation. */ id = nrmax; jupbnd = *last; if (*last > *limit / 2 + 2) { jupbnd = *limit + 3 - *last; } for (k = id; k <= jupbnd; ++k) { maxerr = iord[nrmax]; errmax = elist[maxerr]; if (fabs(blist[maxerr] - alist[maxerr]) > small) { goto L90; } ++nrmax; /* L50: */ } } /* perform extrapolation. L60: */ ++numrl2; rlist2[numrl2 - 1] = area; rdqelg(&numrl2, rlist2, &reseps, &abseps, res3la, &nres); ++ktmin; if (ktmin > 5 && *abserr < errsum * .001) { *ier = 5; } if (abseps < *abserr) { ktmin = 0; *abserr = abseps; *result = reseps; correc = erlarg; ertest = fmax2(*epsabs, *epsrel * fabs(reseps)); if (*abserr <= ertest) { break; } } /* prepare bisection of the smallest interval. L70: */ if (numrl2 == 1) { noext = TRUE; } if (*ier == 5) { break; } maxerr = iord[1]; errmax = elist[maxerr]; nrmax = 1; extrap = FALSE; small *= .5; erlarg = errsum; L90: ; } /* L100: set final result and error estimate. */ /* ------------------------------------ */ if (*abserr == oflow) goto L115; if (*ier + ierro == 0) goto L110; if (ierro == 3) *abserr += correc; if (*ier == 0) *ier = 3; if (*result == 0. || area == 0.) { if (*abserr > errsum) goto L115; if (area == 0.) goto L130; } else { /* L105:*/ if (*abserr / fabs(*result) > errsum / fabs(area)) goto L115; } L110:/* test on divergence. */ if (ksgn == -1 && fmax2(fabs(*result), fabs(area)) <= defabs * .01) { goto L130; } if (.01 > *result / area || *result / area > 100. || errsum > fabs(area)) { *ier = 5; } goto L130; L115:/* compute global integral sum. */ *result = 0.; for (k = 1; k <= *last; ++k) *result += rlist[k]; *abserr = errsum; L130: if (*ier > 2) L140: *neval = *last * 42 - 21; return; } /* rdqagse_ */ static void rdqk15i(integr_fn f, void *ex, double *boun, int *inf, double *a, double *b, double *result, double *abserr, double *resabs, double *resasc) { /* Initialized data */ static double wg[8] = { 0., .129484966168869693270611432679082, 0., .27970539148927666790146777142378, 0., .381830050505118944950369775488975, 0., .417959183673469387755102040816327 }; static double xgk[8] = { .991455371120812639206854697526329, .949107912342758524526189684047851, .864864423359769072789712788640926, .741531185599394439863864773280788, .58608723546769113029414483825873, .405845151377397166906606412076961, .207784955007898467600689403773245, 0. }; static double wgk[8] = { .02293532201052922496373200805897, .063092092629978553290700663189204, .104790010322250183839876322541518, .140653259715525918745189590510238, .16900472663926790282658342659855, .190350578064785409913256402421014, .204432940075298892414161999234649, .209482141084727828012999174891714 }; /* Local variables */ double absc, dinf, resg, resk, fsum, absc1, absc2, fval1, fval2; int j; double hlgth, centr, reskh, uflow; double tabsc1, tabsc2, fc, epmach; double fv1[7], fv2[7], vec[15], vec2[15]; /* ***begin prologue dqk15i ***date written 800101 (yymmdd) ***revision date 830518 (yymmdd) ***category no. h2a3a2,h2a4a2 ***keywords 15-point transformed gauss-kronrod rules ***author piessens,robert,appl. math. & progr. div. - k.u.leuven de doncker,elise,appl. math. & progr. div. - k.u.leuven ***purpose the original (infinite integration range is mapped onto the interval (0,1) and (a,b) is a part of (0,1). it is the purpose to compute i = integral of transformed integrand over (a,b), j = integral of abs(transformed integrand) over (a,b). ***description integration rule standard fortran subroutine double precision version parameters on entry f - double precision fuction subprogram defining the integrand function f(x). the actual name for f needs to be declared e x t e r n a l in the calling program. boun - double precision finite bound of original integration range (set to zero if inf = +2) inf - int if inf = -1, the original interval is (-infinity,bound), if inf = +1, the original interval is (bound,+infinity), if inf = +2, the original interval is (-infinity,+infinity) and the integral is computed as the sum of two integrals, one over (-infinity,0) and one over (0,+infinity). a - double precision lower limit for integration over subrange of (0,1) b - double precision upper limit for integration over subrange of (0,1) on return result - double precision approximation to the integral i result is computed by applying the 15-point kronrod rule(resk) obtained by optimal addition of abscissae to the 7-point gauss rule(resg). abserr - double precision estimate of the modulus of the absolute error, which should equal or exceed abs(i-result) resabs - double precision approximation to the integral j resasc - double precision approximation to the integral of abs((transformed integrand)-i/(b-a)) over (a,b) ***references (none) ***end prologue dqk15i the abscissae and weights are supplied for the interval (-1,1). because of symmetry only the positive abscissae and their corresponding weights are given. xgk - abscissae of the 15-point kronrod rule xgk(2), xgk(4), ... abscissae of the 7-point gauss rule xgk(1), xgk(3), ... abscissae which are optimally added to the 7-point gauss rule wgk - weights of the 15-point kronrod rule wg - weights of the 7-point gauss rule, corresponding to the abscissae xgk(2), xgk(4), ... wg(1), wg(3), ... are set to zero. list of major variables ----------------------- centr - mid point of the interval hlgth - half-length of the interval absc* - abscissa tabsc* - transformed abscissa fval* - function value resg - result of the 7-point gauss formula resk - result of the 15-point kronrod formula reskh - approximation to the mean value of the transformed integrand over (a,b), i.e. to i/(b-a) machine dependent constants --------------------------- epmach is the largest relative spacing. uflow is the smallest positive magnitude. */ /* ***first executable statement dqk15i */ epmach = DBL_EPSILON; uflow = DBL_MIN; dinf = (double) imin2(1, *inf); centr = (*a + *b) * .5; hlgth = (*b - *a) * .5; tabsc1 = *boun + dinf * (1. - centr) / centr; vec[0] = tabsc1; if (*inf == 2) { vec2[0] = -tabsc1; } for (j = 1; j <= 7; ++j) { absc = hlgth * xgk[j - 1]; absc1 = centr - absc; absc2 = centr + absc; tabsc1 = *boun + dinf * (1. - absc1) / absc1; tabsc2 = *boun + dinf * (1. - absc2) / absc2; vec[(j << 1) - 1] = tabsc1; vec[j * 2] = tabsc2; if (*inf == 2) { vec2[(j << 1) - 1] = -tabsc1; vec2[j * 2] = -tabsc2; } /* L5: */ } f(vec, 15, ex); /* -> new vec[] overwriting old vec[] */ if (*inf == 2) f(vec2, 15, ex); fval1 = vec[0]; if (*inf == 2) fval1 += vec2[0]; fc = fval1 / centr / centr; /* compute the 15-point kronrod approximation to the integral, and estimate the error. */ resg = wg[7] * fc; resk = wgk[7] * fc; *resabs = fabs(resk); for (j = 1; j <= 7; ++j) { absc = hlgth * xgk[j - 1]; absc1 = centr - absc; absc2 = centr + absc; tabsc1 = *boun + dinf * (1. - absc1) / absc1; tabsc2 = *boun + dinf * (1. - absc2) / absc2; fval1 = vec[(j << 1) - 1]; fval2 = vec[j * 2]; if (*inf == 2) { fval1 += vec2[(j << 1) - 1]; } if (*inf == 2) { fval2 += vec2[j * 2]; } fval1 = fval1 / absc1 / absc1; fval2 = fval2 / absc2 / absc2; fv1[j - 1] = fval1; fv2[j - 1] = fval2; fsum = fval1 + fval2; resg += wg[j - 1] * fsum; resk += wgk[j - 1] * fsum; *resabs += wgk[j - 1] * (fabs(fval1) + fabs(fval2)); /* L10: */ } reskh = resk * .5; *resasc = wgk[7] * fabs(fc - reskh); for (j = 1; j <= 7; ++j) { *resasc += wgk[j - 1] * (fabs(fv1[j - 1] - reskh) + fabs(fv2[j - 1] - reskh)); /* L20: */ } *result = resk * hlgth; *resasc *= hlgth; *resabs *= hlgth; *abserr = fabs((resk - resg) * hlgth); if (*resasc != 0. && *abserr != 0.) { *abserr = *resasc * fmin2(1., pow(*abserr * 200. / *resasc, 1.5)); } if (*resabs > uflow / (epmach * 50.)) { *abserr = fmax2(epmach * 50. * *resabs, *abserr); } return; } /* rdqk15i_ */ static void rdqelg(int *n, double *epstab, double * result, double *abserr, double *res3la, int *nres) { /* Local variables */ int i__, indx, ib, ib2, ie, k1, k2, k3, num, newelm, limexp; double delta1, delta2, delta3, e0, e1, e1abs, e2, e3, epmach, epsinf; double oflow, ss, res; double errA, err1, err2, err3, tol1, tol2, tol3; /* ***begin prologue dqelg ***refer to dqagie,dqagoe,dqagpe,dqagse ***revision date 830518 (yymmdd) ***keywords epsilon algorithm, convergence acceleration, extrapolation ***author piessens,robert,appl. math. & progr. div. - k.u.leuven de doncker,elise,appl. math & progr. div. - k.u.leuven ***purpose the routine determines the limit of a given sequence of approximations, by means of the epsilon algorithm of p.wynn. an estimate of the absolute error is also given. the condensed epsilon table is computed. only those elements needed for the computation of the next diagonal are preserved. ***description epsilon algorithm standard fortran subroutine double precision version parameters n - int epstab(n) contains the new element in the first column of the epsilon table. epstab - double precision vector of dimension 52 containing the elements of the two lower diagonals of the triangular epsilon table. the elements are numbered starting at the right-hand corner of the triangle. result - double precision resulting approximation to the integral abserr - double precision estimate of the absolute error computed from result and the 3 previous results res3la - double precision vector of dimension 3 containing the last 3 results nres - int number of calls to the routine (should be zero at first call) ***end prologue dqelg list of major variables ----------------------- e0 - the 4 elements on which the computation of a new e1 element in the epsilon table is based e2 e3 e0 e3 e1 new e2 newelm - number of elements to be computed in the new diagonal errA - errA = abs(e1-e0)+abs(e2-e1)+abs(new-e2) result - the element in the new diagonal with least value of errA machine dependent constants --------------------------- epmach is the largest relative spacing. oflow is the largest positive magnitude. limexp is the maximum number of elements the epsilon table can contain. if this number is reached, the upper diagonal of the epsilon table is deleted. */ /* ***first executable statement dqelg */ /* Parameter adjustments */ --res3la; --epstab; /* Function Body */ epmach = DBL_EPSILON; oflow = DBL_MAX; ++(*nres); *abserr = oflow; *result = epstab[*n]; if (*n < 3) { goto L100; } limexp = 50; epstab[*n + 2] = epstab[*n]; newelm = (*n - 1) / 2; epstab[*n] = oflow; num = *n; k1 = *n; for (i__ = 1; i__ <= newelm; ++i__) { k2 = k1 - 1; k3 = k1 - 2; res = epstab[k1 + 2]; e0 = epstab[k3]; e1 = epstab[k2]; e2 = res; e1abs = fabs(e1); delta2 = e2 - e1; err2 = fabs(delta2); tol2 = fmax2(fabs(e2), e1abs) * epmach; delta3 = e1 - e0; err3 = fabs(delta3); tol3 = fmax2(e1abs, fabs(e0)) * epmach; if (err2 <= tol2 && err3 <= tol3) { /* if e0, e1 and e2 are equal to within machine accuracy, convergence is assumed. */ *result = res;/* result = e2 */ *abserr = err2 + err3;/* abserr = fabs(e1-e0)+fabs(e2-e1) */ goto L100; /* ***jump out of do-loop */ } e3 = epstab[k1]; epstab[k1] = e1; delta1 = e1 - e3; err1 = fabs(delta1); tol1 = fmax2(e1abs, fabs(e3)) * epmach; /* if two elements are very close to each other, omit a part of the table by adjusting the value of n */ if (err1 > tol1 && err2 > tol2 && err3 > tol3) { ss = 1. / delta1 + 1. / delta2 - 1. / delta3; epsinf = fabs(ss * e1); /* test to detect irregular behaviour in the table, and eventually omit a part of the table adjusting the value of n. */ if (epsinf > 1e-4) { goto L30; } } *n = i__ + i__ - 1; goto L50;/* ***jump out of do-loop */ L30:/* compute a new element and eventually adjust the value of result. */ res = e1 + 1. / ss; epstab[k1] = res; k1 += -2; errA = err2 + fabs(res - e2) + err3; if (errA <= *abserr) { *abserr = errA; *result = res; } } /* shift the table. */ L50: if (*n == limexp) { *n = (limexp / 2 << 1) - 1; } if (num / 2 << 1 == num) ib = 2; else ib = 1; ie = newelm + 1; for (i__ = 1; i__ <= ie; ++i__) { ib2 = ib + 2; epstab[ib] = epstab[ib2]; ib = ib2; } if (num != *n) { indx = num - *n + 1; for (i__ = 1; i__ <= *n; ++i__) { epstab[i__] = epstab[indx]; ++indx; } } /*L80:*/ if (*nres >= 4) { /* L90: */ *abserr = fabs(*result - res3la[3]) + fabs(*result - res3la[2]) + fabs(*result - res3la[1]); res3la[1] = res3la[2]; res3la[2] = res3la[3]; res3la[3] = *result; } else { res3la[*nres] = *result; *abserr = oflow; } L100:/* compute error estimate */ *abserr = fmax2(*abserr, epmach * 5. * fabs(*result)); return; } /* rdqelg_ */ static void rdqk21(integr_fn f, void *ex, double *a, double *b, double *result, double *abserr, double *resabs, double *resasc) { /* Initialized data */ static double wg[5] = { .066671344308688137593568809893332, .149451349150580593145776339657697, .219086362515982043995534934228163, .269266719309996355091226921569469, .295524224714752870173892994651338 }; static double xgk[11] = { .995657163025808080735527280689003, .973906528517171720077964012084452, .930157491355708226001207180059508, .865063366688984510732096688423493, .780817726586416897063717578345042, .679409568299024406234327365114874, .562757134668604683339000099272694, .433395394129247190799265943165784, .294392862701460198131126603103866, .14887433898163121088482600112972,0. }; static double wgk[11] = { .011694638867371874278064396062192, .03255816230796472747881897245939, .05475589657435199603138130024458, .07503967481091995276704314091619, .093125454583697605535065465083366, .109387158802297641899210590325805, .123491976262065851077958109831074, .134709217311473325928054001771707, .142775938577060080797094273138717, .147739104901338491374841515972068, .149445554002916905664936468389821 }; /* Local variables */ double fv1[10], fv2[10], vec[21]; double absc, resg, resk, fsum, fval1, fval2; double hlgth, centr, reskh, uflow; double fc, epmach, dhlgth; int j, jtw, jtwm1; /* ***begin prologue dqk21 ***date written 800101 (yymmdd) ***revision date 830518 (yymmdd) ***category no. h2a1a2 ***keywords 21-point gauss-kronrod rules ***author piessens,robert,appl. math. & progr. div. - k.u.leuven de doncker,elise,appl. math. & progr. div. - k.u.leuven ***purpose to compute i = integral of f over (a,b), with error estimate j = integral of abs(f) over (a,b) ***description integration rules standard fortran subroutine double precision version parameters on entry f - double precision function subprogram defining the integrand function f(x). the actual name for f needs to be declared e x t e r n a l in the driver program. a - double precision lower limit of integration b - double precision upper limit of integration on return result - double precision approximation to the integral i result is computed by applying the 21-point kronrod rule (resk) obtained by optimal addition of abscissae to the 10-point gauss rule (resg). abserr - double precision estimate of the modulus of the absolute error, which should not exceed abs(i-result) resabs - double precision approximation to the integral j resasc - double precision approximation to the integral of abs(f-i/(b-a)) over (a,b) ***references (none) ***end prologue dqk21 the abscissae and weights are given for the interval (-1,1). because of symmetry only the positive abscissae and their corresponding weights are given. xgk - abscissae of the 21-point kronrod rule xgk(2), xgk(4), ... abscissae of the 10-point gauss rule xgk(1), xgk(3), ... abscissae which are optimally added to the 10-point gauss rule wgk - weights of the 21-point kronrod rule wg - weights of the 10-point gauss rule gauss quadrature weights and kronron quadrature abscissae and weights as evaluated with 80 decimal digit arithmetic by l. w. fullerton, bell labs, nov. 1981. list of major variables ----------------------- centr - mid point of the interval hlgth - half-length of the interval absc - abscissa fval* - function value resg - result of the 10-point gauss formula resk - result of the 21-point kronrod formula reskh - approximation to the mean value of f over (a,b), i.e. to i/(b-a) machine dependent constants --------------------------- epmach is the largest relative spacing. uflow is the smallest positive magnitude. */ /* ***first executable statement dqk21 */ epmach = DBL_EPSILON; uflow = DBL_MIN; centr = (*a + *b) * .5; hlgth = (*b - *a) * .5; dhlgth = fabs(hlgth); /* compute the 21-point kronrod approximation to the integral, and estimate the absolute error. */ resg = 0.; vec[0] = centr; for (j = 1; j <= 5; ++j) { jtw = j << 1; absc = hlgth * xgk[jtw - 1]; vec[(j << 1) - 1] = centr - absc; /* L5: */ vec[j * 2] = centr + absc; } for (j = 1; j <= 5; ++j) { jtwm1 = (j << 1) - 1; absc = hlgth * xgk[jtwm1 - 1]; vec[(j << 1) + 9] = centr - absc; vec[(j << 1) + 10] = centr + absc; } f(vec, 21, ex); fc = vec[0]; resk = wgk[10] * fc; *resabs = fabs(resk); for (j = 1; j <= 5; ++j) { jtw = j << 1; absc = hlgth * xgk[jtw - 1]; fval1 = vec[(j << 1) - 1]; fval2 = vec[j * 2]; fv1[jtw - 1] = fval1; fv2[jtw - 1] = fval2; fsum = fval1 + fval2; resg += wg[j - 1] * fsum; resk += wgk[jtw - 1] * fsum; *resabs += wgk[jtw - 1] * (fabs(fval1) + fabs(fval2)); /* L10: */ } for (j = 1; j <= 5; ++j) { jtwm1 = (j << 1) - 1; absc = hlgth * xgk[jtwm1 - 1]; fval1 = vec[(j << 1) + 9]; fval2 = vec[(j << 1) + 10]; fv1[jtwm1 - 1] = fval1; fv2[jtwm1 - 1] = fval2; fsum = fval1 + fval2; resk += wgk[jtwm1 - 1] * fsum; *resabs += wgk[jtwm1 - 1] * (fabs(fval1) + fabs(fval2)); /* L15: */ } reskh = resk * .5; *resasc = wgk[10] * fabs(fc - reskh); for (j = 1; j <= 10; ++j) { *resasc += wgk[j - 1] * (fabs(fv1[j - 1] - reskh) + fabs(fv2[j - 1] - reskh)); /* L20: */ } *result = resk * hlgth; *resabs *= dhlgth; *resasc *= dhlgth; *abserr = fabs((resk - resg) * hlgth); if (*resasc != 0. && *abserr != 0.) { *abserr = *resasc * fmin2(1., pow(*abserr * 200. / *resasc, 1.5)); } if (*resabs > uflow / (epmach * 50.)) { *abserr = fmax2(epmach * 50. * *resabs, *abserr); } return; } /* rdqk21_ */ static void rdqpsrt(int *limit, int *last, int *maxerr, double *ermax, double *elist, int *iord, int *nrmax) { /* Local variables */ int i, j, k, ido, jbnd, isucc, jupbn; double errmin, errmax; /* ***begin prologue dqpsrt ***refer to dqage,dqagie,dqagpe,dqawse ***routines called (none) ***revision date 810101 (yymmdd) ***keywords sequential sorting ***author piessens,robert,appl. math. & progr. div. - k.u.leuven de doncker,elise,appl. math. & progr. div. - k.u.leuven ***purpose this routine maintains the descending ordering in the list of the local error estimated resulting from the interval subdivision process. at each call two error estimates are inserted using the sequential search method, top-down for the largest error estimate and bottom-up for the smallest error estimate. ***description ordering routine standard fortran subroutine double precision version parameters (meaning at output) limit - int maximum number of error estimates the list can contain last - int number of error estimates currently in the list maxerr - int maxerr points to the nrmax-th largest error estimate currently in the list ermax - double precision nrmax-th largest error estimate ermax = elist(maxerr) elist - double precision vector of dimension last containing the error estimates iord - int vector of dimension last, the first k elements of which contain pointers to the error estimates, such that elist(iord(1)),..., elist(iord(k)) form a decreasing sequence, with k = last if last <= (limit/2+2), and k = limit+1-last otherwise nrmax - int maxerr = iord(nrmax) ***end prologue dqpsrt */ /* Parameter adjustments */ --iord; --elist; /* Function Body */ /* check whether the list contains more than two error estimates. */ if (*last <= 2) { iord[1] = 1; iord[2] = 2; goto Last; } /* this part of the routine is only executed if, due to a difficult integrand, subdivision increased the error estimate. in the normal case the insert procedure should start after the nrmax-th largest error estimate. */ errmax = elist[*maxerr]; if (*nrmax > 1) { ido = *nrmax - 1; for (i = 1; i <= ido; ++i) { isucc = iord[*nrmax - 1]; if (errmax <= elist[isucc]) break; /* out of for-loop */ iord[*nrmax] = isucc; --(*nrmax); /* L20: */ } } /*L30: compute the number of elements in the list to be maintained in descending order. this number depends on the number of subdivisions still allowed. */ if (*last > *limit / 2 + 2) jupbn = *limit + 3 - *last; else jupbn = *last; errmin = elist[*last]; /* insert errmax by traversing the list top-down, starting comparison from the element elist(iord(nrmax+1)). */ jbnd = jupbn - 1; for (i = *nrmax + 1; i <= jbnd; ++i) { isucc = iord[i]; if (errmax >= elist[isucc]) {/* ***jump out of do-loop */ /* L60: insert errmin by traversing the list bottom-up. */ iord[i - 1] = *maxerr; for (j = i, k = jbnd; j <= jbnd; j++, k--) { isucc = iord[k]; if (errmin < elist[isucc]) { /* goto L80; ***jump out of do-loop */ iord[k + 1] = *last; goto Last; } iord[k + 1] = isucc; } iord[i] = *last; goto Last; } iord[i - 1] = isucc; } iord[jbnd] = *maxerr; iord[jupbn] = *last; Last:/* set maxerr and ermax. */ *maxerr = iord[*nrmax]; *ermax = elist[*maxerr]; return; } /* rdqpsrt_ */