/* * R : A Computer Language for Statistical Data Analysis * Copyright (C) 1995, 1996 Robert Gentleman and Ross Ihaka * Copyright (C) 1997--2018 The R Core Team. * Copyright (C) 2003--2016 The R Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, a copy is available at * https://www.R-project.org/Licenses/ * * * Object Formatting * * See ./paste.c for do_paste() , do_format() and do_formatinfo() and * ./util.c for do_formatC() * See ./printutils.c for general remarks on Printing and the Encode.. utils. * See ./print.c for do_printdefault, do_prmatrix, etc. * * Exports * formatString * formatLogical * formatInteger * formatReal * formatComplex * * These formatFOO() functions determine the proper width, digits, etc. */ #ifdef HAVE_CONFIG_H #include #endif #include #include /* for DBL_EPSILON */ #include #include /* this is just for conformity with other types */ attribute_hidden void formatRaw(const Rbyte *x, R_xlen_t n, int *fieldwidth) { *fieldwidth = 2; } attribute_hidden void formatString(const SEXP *x, R_xlen_t n, int *fieldwidth, int quote) { int xmax = 0; int l; for (R_xlen_t i = 0; i < n; i++) { if (x[i] == NA_STRING) { l = quote ? R_print.na_width : R_print.na_width_noquote; } else l = Rstrlen(x[i], quote) + (quote ? 2 : 0); if (l > xmax) xmax = l; } *fieldwidth = xmax; } void formatLogical(const int *x, R_xlen_t n, int *fieldwidth) { *fieldwidth = 1; for(R_xlen_t i = 0 ; i < n; i++) { if (x[i] == NA_LOGICAL) { if(*fieldwidth < R_print.na_width) *fieldwidth = R_print.na_width; } else if (x[i] != 0 && *fieldwidth < 4) { *fieldwidth = 4; } else if (x[i] == 0 && *fieldwidth < 5 ) { *fieldwidth = 5; break; /* this is the widest it can be, so stop */ } } } void formatInteger(const int *x, R_xlen_t n, int *fieldwidth) { int xmin = INT_MAX, xmax = INT_MIN, naflag = 0; int l; for (R_xlen_t i = 0; i < n; i++) { if (x[i] == NA_INTEGER) naflag = 1; else { if (x[i] < xmin) xmin = x[i]; if (x[i] > xmax) xmax = x[i]; } } if (naflag) *fieldwidth = R_print.na_width; else *fieldwidth = 1; if (xmin < 0) { l = IndexWidth(-xmin) + 1; /* +1 for sign */ if (l > *fieldwidth) *fieldwidth = l; } if (xmax > 0) { l = IndexWidth(xmax); if (l > *fieldwidth) *fieldwidth = l; } } /*--------------------------------------------------------------------------- * scientific format determination for real numbers. * This is time-critical code. It is worth optimizing. * * nsig digits altogether * kpower+1 digits to the left of "." * kpower+1+sgn including sign * * Using GLOBAL R_print.digits -- had #define MAXDIG R_print.digits */ /* Very likely everyone has nearbyintl now (2018), but it took until 2012 for FreeBSD to get it, and longer for Cygwin. */ #if defined(HAVE_LONG_DOUBLE) && (SIZEOF_LONG_DOUBLE > SIZEOF_DOUBLE) # ifdef HAVE_NEARBYINTL # define R_nearbyintl nearbyintl # elif defined(HAVE_RINTL) # define R_nearbyintl rintl # else # define R_nearbyintl private_nearbyintl LDOUBLE private_nearbyintl(LDOUBLE x) { LDOUBLE x1; x1 = - floorl(-x + 0.5); x = floorl(x + 0.5); if (x == x1) return(x); else { /* FIXME: we should really test for floorl, also C99. But FreeBSD 7.x does have it, but not nearbyintl */ if (x/2.0 == floorl(x/2.0)) return(x); else return(x1); } } # endif #endif #define NB 1000 static void format_via_sprintf(double r, int d, int *kpower, int *nsig) { static char buff[NB]; int i; snprintf(buff, NB, "%#.*e", d - 1, r); *kpower = (int) strtol(buff + (d + 2), NULL, 10); for (i = d; i >= 2; i--) if (buff[i] != '0') break; *nsig = i; } #if defined(HAVE_LONG_DOUBLE) && (SIZEOF_LONG_DOUBLE > SIZEOF_DOUBLE) static const long double tbl[] = { /* Powers exactly representable with 64 bit mantissa (except the first, which is only used with digits=0) */ 1e-1, 1e00, 1e01, 1e02, 1e03, 1e04, 1e05, 1e06, 1e07, 1e08, 1e09, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22, 1e23, 1e24, 1e25, 1e26, 1e27 }; #define KP_MAX 27 #else static const double tbl[] = { 1e-1, 1e00, 1e01, 1e02, 1e03, 1e04, 1e05, 1e06, 1e07, 1e08, 1e09, 1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19, 1e20, 1e21, 1e22 }; #define KP_MAX 22 #endif static void scientific(const double *x, int *neg, int *kpower, int *nsig, Rboolean *roundingwidens) { /* for a number x , determine * neg = 1_{x < 0} {0/1} * kpower = Exponent of 10; * nsig = min(R_print.digits, #{significant digits of alpha}) * roundingwidens = TRUE iff rounding causes x to increase in width * * where |x| = alpha * 10^kpower and 1 <= alpha < 10 */ register double alpha; register double r; register int kp; int j; if (*x == 0.0) { *kpower = 0; *nsig = 1; *neg = 0; *roundingwidens = FALSE; } else { if(*x < 0.0) { *neg = 1; r = -*x; } else { *neg = 0; r = *x; } if (R_print.digits >= DBL_DIG + 1) { format_via_sprintf(r, R_print.digits, kpower, nsig); *roundingwidens = FALSE; return; } kp = (int) floor(log10(r)) - R_print.digits + 1;/* r = |x|; 10^(kp + digits - 1) <= r */ #if defined(HAVE_LONG_DOUBLE) && (SIZEOF_LONG_DOUBLE > SIZEOF_DOUBLE) long double r_prec = r; /* use exact scaling factor in long double precision, if possible */ if (abs(kp) <= 27) { if (kp > 0) r_prec /= tbl[kp+1]; else if (kp < 0) r_prec *= tbl[ -kp+1]; } #ifdef HAVE_POWL // powl is C99 but only added to FreeBSD in 2017. else r_prec /= powl(10.0, (long double) kp); #else else if (kp <= R_dec_min_exponent) r_prec = (r_prec * 1e+303)/Rexp10((double)(kp+303)); else r_prec /= Rexp10((double) kp); #endif if (r_prec < tbl[R_print.digits]) { r_prec *= 10.0; kp--; } /* round alpha to integer, 10^(digits-1) <= alpha <= 10^digits accuracy limited by double rounding problem, alpha already rounded to 64 bits */ alpha = (double) R_nearbyintl(r_prec); #else /* not using long doubles */ double r_prec = r; /* use exact scaling factor in double precision, if possible */ if (abs(kp) <= 22) { if (kp >= 0) r_prec /= tbl[kp+1]; else r_prec *= tbl[ -kp+1]; } /* For IEC60559 1e-308 is not representable except by gradual underflow. Shifting by 303 allows for any potential denormalized numbers x, and makes the reasonable assumption that R_dec_min_exponent+303 is in range. Representation of 1e+303 has low error. */ else if (kp <= R_dec_min_exponent) r_prec = (r_prec * 1e+303)/Rexp10((double)(kp+303)); else r_prec /= Rexp10((double)kp); if (r_prec < tbl[R_print.digits]) { r_prec *= 10.0; kp--; } /* round alpha to integer, 10^(digits-1) <= alpha <= 10^digits */ /* accuracy limited by double rounding problem, alpha already rounded to 53 bits */ alpha = nearbyint(r_prec); #endif *nsig = R_print.digits; for (j = 1; j <= R_print.digits; j++) { alpha /= 10.0; if (alpha == floor(alpha)) { (*nsig)--; } else { break; } } if (*nsig == 0 && R_print.digits > 0) { *nsig = 1; kp += 1; } *kpower = kp + R_print.digits - 1; /* Scientific format may do more rounding than fixed format, e.g. 9996 with 3 digits is 1e+04 in scientific, but 9996 in fixed. This happens when the true value r is less than 10^(kpower+1) and would not round up to it in fixed format. Here rgt is the decimal place that will be cut off by rounding */ int rgt = R_print.digits - *kpower; /* bound rgt by 0 and KP_MAX */ rgt = rgt < 0 ? 0 : rgt > KP_MAX ? KP_MAX : rgt; double fuzz = 0.5/(double)tbl[1 + rgt]; // kpower can be bigger than the table. *roundingwidens = *kpower > 0 && *kpower <= KP_MAX && r < tbl[*kpower + 1] - fuzz; } } /* The return values are w : the required field width d : use %w.df in fixed format, %#w.de in scientific format e : use scientific format if != 0, value is number of exp digits - 1 nsmall specifies the minimum number of decimal digits in fixed format: it is 0 except when called from do_format. */ void formatReal(const double *x, R_xlen_t n, int *w, int *d, int *e, int nsmall) { int left, right, sleft; int mnl, mxl, rgt, mxsl, mxns, wF; Rboolean roundingwidens; int neg_i, neg, kpower, nsig; int naflag, nanflag, posinf, neginf; nanflag = 0; naflag = 0; posinf = 0; neginf = 0; neg = 0; rgt = mxl = mxsl = mxns = INT_MIN; mnl = INT_MAX; for (R_xlen_t i = 0; i < n; i++) { if (!R_FINITE(x[i])) { if(ISNA(x[i])) naflag = 1; else if(ISNAN(x[i])) nanflag = 1; else if(x[i] > 0) posinf = 1; else neginf = 1; } else { scientific(&x[i], &neg_i, &kpower, &nsig, &roundingwidens); left = kpower + 1; if (roundingwidens) left--; sleft = neg_i + ((left <= 0) ? 1 : left); /* >= 1 */ right = nsig - left; /* #{digits} right of '.' ( > 0 often)*/ if (neg_i) neg = 1; /* if any < 0, need extra space for sign */ /* Infinite precision "F" Format : */ if (right > rgt) rgt = right; /* max digits to right of . */ if (left > mxl) mxl = left; /* max digits to left of . */ if (left < mnl) mnl = left; /* min digits to left of . */ if (sleft> mxsl) mxsl = sleft; /* max left including sign(s)*/ if (nsig > mxns) mxns = nsig; /* max sig digits */ } } /* F Format: use "F" format WHENEVER we use not more space than 'E' * and still satisfy 'R_print.digits' {but as if nsmall==0 !} * * E Format has the form [S]X[.XXX]E+XX[X] * * This is indicated by setting *e to non-zero (usually 1) * If the additional exponent digit is required *e is set to 2 */ /*-- These 'mxsl' & 'rgt' are used in F Format * AND in the ____ if(.) "F" else "E" ___ below: */ if (R_print.digits == 0) rgt = 0; if (mxl < 0) mxsl = 1 + neg; /* we use %#w.dg, so have leading zero */ /* use nsmall only *after* comparing "F" vs "E": */ if (rgt < 0) rgt = 0; wF = mxsl + rgt + (rgt != 0); /* width for F format */ /*-- 'see' how "E" Exponential format would be like : */ *e = (mxl > 100 || mnl <= -99) ? 2 /* 3 digit exponent */ : 1; if (mxns != INT_MIN) { *d = mxns - 1; *w = neg + (*d > 0) + *d + 4 + *e; /* width for E format */ if (wF <= *w + R_print.scipen) { /* Fixpoint if it needs less space */ *e = 0; if (nsmall > rgt) { rgt = nsmall; wF = mxsl + rgt + (rgt != 0); } *d = rgt; *w = wF; } /* else : "E" Exponential format -- all done above */ } else { /* when all x[i] are non-finite */ *w = 0;/* to be increased */ *d = 0; *e = 0; } if (naflag && *w < R_print.na_width) *w = R_print.na_width; if (nanflag && *w < 3) *w = 3; if (posinf && *w < 3) *w = 3; if (neginf && *w < 4) *w = 4; } /* From complex.c. */ void z_prec_r(Rcomplex *r, const Rcomplex *x, double digits); /* As from 2.2.0 the number of digits applies to real and imaginary parts together, not separately */ void formatComplex(const Rcomplex *x, R_xlen_t n, int *wr, int *dr, int *er, int *wi, int *di, int *ei, int nsmall) { /* format.info() for x[1..n] for both Re & Im */ int left, right, sleft; int rt, mnl, mxl, mxsl, mxns, wF, i_wF; int i_rt, i_mnl, i_mxl, i_mxsl, i_mxns; Rboolean roundingwidens; int neg_i, neg, kpower, nsig; int naflag, rnanflag, rposinf, rneginf, inanflag, iposinf; Rcomplex tmp; Rboolean all_re_zero = TRUE, all_im_zero = TRUE; naflag = 0; rnanflag = 0; rposinf = 0; rneginf = 0; inanflag = 0; iposinf = 0; neg = 0; rt = mxl = mxsl = mxns = INT_MIN; i_rt= i_mxl= i_mxsl= i_mxns= INT_MIN; i_mnl = mnl = INT_MAX; for (R_xlen_t i = 0; i < n; i++) { /* Now round */ z_prec_r(&tmp, &(x[i]), R_print.digits); if(ISNA(tmp.r) || ISNA(tmp.i)) { naflag = 1; } else { /* real part */ if(!R_FINITE(tmp.r)) { if (ISNAN(tmp.r)) rnanflag = 1; else if (tmp.r > 0) rposinf = 1; else rneginf = 1; } else { if(x[i].r != 0) all_re_zero = FALSE; scientific(&(tmp.r), &neg_i, &kpower, &nsig, &roundingwidens); left = kpower + 1; if (roundingwidens) left--; sleft = neg_i + ((left <= 0) ? 1 : left); /* >= 1 */ right = nsig - left; /* #{digits} right of '.' ( > 0 often)*/ if (neg_i) neg = 1; /* if any < 0, need extra space for sign */ if (right > rt) rt = right; /* max digits to right of . */ if (left > mxl) mxl = left; /* max digits to left of . */ if (left < mnl) mnl = left; /* min digits to left of . */ if (sleft> mxsl) mxsl = sleft; /* max left including sign(s) */ if (nsig > mxns) mxns = nsig; /* max sig digits */ } /* imaginary part */ /* this is always unsigned */ /* we explicitly put the sign in when we print */ if(!R_FINITE(tmp.i)) { if (ISNAN(tmp.i)) inanflag = 1; else iposinf = 1; } else { if(x[i].i != 0) all_im_zero = FALSE; scientific(&(tmp.i), &neg_i, &kpower, &nsig, &roundingwidens); left = kpower + 1; if (roundingwidens) left--; sleft = ((left <= 0) ? 1 : left); right = nsig - left; if (right > i_rt) i_rt = right; if (left > i_mxl) i_mxl = left; if (left < i_mnl) i_mnl = left; if (sleft> i_mxsl) i_mxsl = sleft; if (nsig > i_mxns) i_mxns = nsig; } /* done: ; */ } } /* see comments in formatReal() for details on this */ /* overall format for real part */ if (R_print.digits == 0) rt = 0; if (mxl != INT_MIN) { if (mxl < 0) mxsl = 1 + neg; if (rt < 0) rt = 0; wF = mxsl + rt + (rt != 0); *er = (mxl > 100 || mnl < -99) ? 2 : 1; *dr = mxns - 1; *wr = neg + (*dr > 0) + *dr + 4 + *er; } else { *er = 0; *wr = 0; *dr = 0; wF = 0; } /* overall format for imaginary part */ if (R_print.digits == 0) i_rt = 0; if (i_mxl != INT_MIN) { if (i_mxl < 0) i_mxsl = 1; if (i_rt < 0) i_rt = 0; i_wF = i_mxsl + i_rt + (i_rt != 0); *ei = (i_mxl > 100 || i_mnl < -99) ? 2 : 1; *di = i_mxns - 1; *wi = (*di > 0) + *di + 4 + *ei; } else { *ei = 0; *wi = 0; *di = 0; i_wF = 0; } /* Now make the fixed/scientific decision */ if(all_re_zero) { *er = *dr = 0; *wr = wF; if (i_wF <= *wi + R_print.scipen) { *ei = 0; if (nsmall > i_rt) {i_rt = nsmall; i_wF = i_mxsl + i_rt + (i_rt != 0);} *di = i_rt; *wi = i_wF; } } else if(all_im_zero) { if (wF <= *wr + R_print.scipen) { *er = 0; if (nsmall > rt) {rt = nsmall; wF = mxsl + rt + (rt != 0);} *dr = rt; *wr = wF; } *ei = *di = 0; *wi = i_wF; } else if(wF + i_wF < *wr + *wi + 2*R_print.scipen) { *er = 0; if (nsmall > rt) {rt = nsmall; wF = mxsl + rt + (rt != 0);} *dr = rt; *wr = wF; *ei = 0; if (nsmall > i_rt) { i_rt = nsmall; i_wF = i_mxsl + i_rt + (i_rt != 0); } *di = i_rt; *wi = i_wF; } /* else scientific for both */ if(*wr < 0) *wr = 0; if(*wi < 0) *wi = 0; /* Ensure space for Inf and NaN */ if (rnanflag && *wr < 3) *wr = 3; if (rposinf && *wr < 3) *wr = 3; if (rneginf && *wr < 4) *wr = 4; if (inanflag && *wi < 3) *wi = 3; if (iposinf && *wi < 3) *wi = 3; /* finally, ensure that there is space for NA */ if (naflag && *wr+*wi+2 < R_print.na_width) *wr += (R_print.na_width -(*wr + *wi + 2)); }