/* * Mathlib : A C Library of Special Functions * Copyright (C) 1998 Ross Ihaka * Copyright (C) 2000-15 The R Core Team * Copyright (C) 2004-15 The R Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU * General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, a copy is available at * https://www.R-project.org/Licenses/ * * DESCRIPTION * * The density of the noncentral chi-squared distribution with "df" * degrees of freedom and noncentrality parameter "ncp". */ #include "nmath.h" #include "dpq.h" double dnchisq(double x, double df, double ncp, int give_log) { const static double eps = 5e-15; double i, ncp2, q, mid, dfmid, imax; LDOUBLE sum, term; #ifdef IEEE_754 if (ISNAN(x) || ISNAN(df) || ISNAN(ncp)) return x + df + ncp; #endif if (!R_FINITE(df) || !R_FINITE(ncp) || ncp < 0 || df < 0) ML_ERR_return_NAN; if(x < 0) return R_D__0; if(x == 0 && df < 2.) return ML_POSINF; if(ncp == 0) return (df > 0) ? dchisq(x, df, give_log) : R_D__0; if(x == ML_POSINF) return R_D__0; ncp2 = 0.5 * ncp; /* find max element of sum */ imax = ceil((-(2+df) +sqrt((2-df) * (2-df) + 4 * ncp * x))/4); if (imax < 0) imax = 0; if(R_FINITE(imax)) { dfmid = df + 2 * imax; mid = dpois_raw(imax, ncp2, FALSE) * dchisq(x, dfmid, FALSE); } else /* imax = Inf */ mid = 0; if(mid == 0) { /* underflow to 0 -- maybe numerically correct; maybe can be more accurate, * particularly when give_log = TRUE */ /* Use central-chisq approximation formula when appropriate; * ((FIXME: the optimal cutoff also depends on (x,df); use always here? )) */ if(give_log || ncp > 1000.) { double nl = df + ncp, ic = nl/(nl + ncp);/* = "1/(1+b)" Abramowitz & St.*/ return dchisq(x*ic, nl*ic, give_log); } else return R_D__0; } sum = mid; /* errorbound := term * q / (1-q) now subsumed in while() / if() below: */ /* upper tail */ term = mid; df = dfmid; i = imax; double x2 = x * ncp2; do { i++; q = x2 / i / df; df += 2; term *= q; sum += term; } while (q >= 1 || term * q > (1-q)*eps || term > 1e-10*sum); /* lower tail */ term = mid; df = dfmid; i = imax; while (i != 0) { df -= 2; q = i * df / x2; i--; term *= q; sum += term; if (q < 1 && term * q <= (1-q)*eps) break; } return R_D_val((double) sum); }