/* * Mathlib : A C Library of Special Functions * Copyright (C) 1998 Ross Ihaka * Copyright (C) 2000-2018 The R Core Team * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, a copy is available at * https://www.R-project.org/Licenses/ * * SYNOPSIS * * #include * double log1p(double x); * * DESCRIPTION * * Compute the relative error logarithm. * * log(1 + x) * * NOTES * * This code is a translation of the Fortran subroutine `dlnrel' * written by W. Fullerton of Los Alamos Scientific Laboratory. */ /* Every currently known platform has log1p (which is C99), but NetBSD/OpenBSD were at least at one time inaccurate */ #ifdef HAVE_CONFIG_H # include #endif #include "nmath.h" #ifndef HAVE_WORKING_LOG1P double Rlog1p(double x) { /* series for log1p on the interval -.375 to .375 * with weighted error 6.35e-32 * log weighted error 31.20 * significant figures required 30.93 * decimal places required 32.01 */ const static double alnrcs[43] = { +.10378693562743769800686267719098e+1, -.13364301504908918098766041553133e+0, +.19408249135520563357926199374750e-1, -.30107551127535777690376537776592e-2, +.48694614797154850090456366509137e-3, -.81054881893175356066809943008622e-4, +.13778847799559524782938251496059e-4, -.23802210894358970251369992914935e-5, +.41640416213865183476391859901989e-6, -.73595828378075994984266837031998e-7, +.13117611876241674949152294345011e-7, -.23546709317742425136696092330175e-8, +.42522773276034997775638052962567e-9, -.77190894134840796826108107493300e-10, +.14075746481359069909215356472191e-10, -.25769072058024680627537078627584e-11, +.47342406666294421849154395005938e-12, -.87249012674742641745301263292675e-13, +.16124614902740551465739833119115e-13, -.29875652015665773006710792416815e-14, +.55480701209082887983041321697279e-15, -.10324619158271569595141333961932e-15, +.19250239203049851177878503244868e-16, -.35955073465265150011189707844266e-17, +.67264542537876857892194574226773e-18, -.12602624168735219252082425637546e-18, +.23644884408606210044916158955519e-19, -.44419377050807936898878389179733e-20, +.83546594464034259016241293994666e-21, -.15731559416479562574899253521066e-21, +.29653128740247422686154369706666e-22, -.55949583481815947292156013226666e-23, +.10566354268835681048187284138666e-23, -.19972483680670204548314999466666e-24, +.37782977818839361421049855999999e-25, -.71531586889081740345038165333333e-26, +.13552488463674213646502024533333e-26, -.25694673048487567430079829333333e-27, +.48747756066216949076459519999999e-28, -.92542112530849715321132373333333e-29, +.17578597841760239233269760000000e-29, -.33410026677731010351377066666666e-30, +.63533936180236187354180266666666e-31, }; #ifdef NOMORE_FOR_THREADS static int nlnrel = 0; static double xmin = 0.0; if (xmin == 0.0) xmin = -1 + sqrt(DBL_EPSILON);/*was sqrt(d1mach(4)); */ if (nlnrel == 0) /* initialize chebychev coefficients */ nlnrel = chebyshev_init(alnrcs, 43, DBL_EPSILON/20);/*was .1*d1mach(3)*/ #else # define nlnrel 22 const static double xmin = -0.999999985; /* 22: for IEEE double precision where DBL_EPSILON = 2.22044604925031e-16 */ #endif if (x == 0.) return 0.;/* speed */ if (x == -1) return(ML_NEGINF); if (x < -1) ML_ERR_return_NAN; if (fabs(x) <= .375) { /* Improve on speed (only); again give result accurate to IEEE double precision: */ if(fabs(x) < .5 * DBL_EPSILON) return x; if( (0 < x && x < 1e-8) || (-1e-9 < x && x < 0)) return x * (1 - .5 * x); /* else */ return x * (1 - x * chebyshev_eval(x / .375, alnrcs, nlnrel)); } /* else */ if (x < xmin) { /* answer less than half precision because x too near -1 */ ML_ERROR(ME_PRECISION, "log1p"); } return log(1 + x); } #endif