/* * Mathlib : A C Library of Special Functions * Copyright (C) 1998 Ross Ihaka * Copyright (C) 2000--2007 The R Core Team * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, a copy is available at * https://www.R-project.org/Licenses/ * * SYNOPSIS * * #include * double ptukey(q, rr, cc, df, lower_tail, log_p); * * DESCRIPTION * * Computes the probability that the maximum of rr studentized * ranges, each based on cc means and with df degrees of freedom * for the standard error, is less than q. * * The algorithm is based on that of the reference. * * REFERENCE * * Copenhaver, Margaret Diponzio & Holland, Burt S. * Multiple comparisons of simple effects in * the two-way analysis of variance with fixed effects. * Journal of Statistical Computation and Simulation, * Vol.30, pp.1-15, 1988. */ #include "nmath.h" #include "dpq.h" static double wprob(double w, double rr, double cc) { /* wprob() : This function calculates probability integral of Hartley's form of the range. w = value of range rr = no. of rows or groups cc = no. of columns or treatments ir = error flag = 1 if pr_w probability > 1 pr_w = returned probability integral from (0, w) program will not terminate if ir is raised. bb = upper limit of legendre integration iMax = maximum acceptable value of integral nleg = order of legendre quadrature ihalf = int ((nleg + 1) / 2) wlar = value of range above which wincr1 intervals are used to calculate second part of integral, else wincr2 intervals are used. C1, C2, C3 = values which are used as cutoffs for terminating or modifying a calculation. M_1_SQRT_2PI = 1 / sqrt(2 * pi); from abramowitz & stegun, p. 3. M_SQRT2 = sqrt(2) xleg = legendre 12-point nodes aleg = legendre 12-point coefficients */ #define nleg 12 #define ihalf 6 /* looks like this is suboptimal for double precision. (see how C1-C3 are used) */ /* const double iMax = 1.; not used if = 1*/ const static double C1 = -30.; const static double C2 = -50.; const static double C3 = 60.; const static double bb = 8.; const static double wlar = 3.; const static double wincr1 = 2.; const static double wincr2 = 3.; const static double xleg[ihalf] = { 0.981560634246719250690549090149, 0.904117256370474856678465866119, 0.769902674194304687036893833213, 0.587317954286617447296702418941, 0.367831498998180193752691536644, 0.125233408511468915472441369464 }; const static double aleg[ihalf] = { 0.047175336386511827194615961485, 0.106939325995318430960254718194, 0.160078328543346226334652529543, 0.203167426723065921749064455810, 0.233492536538354808760849898925, 0.249147045813402785000562436043 }; double a, ac, pr_w, b, binc, c, cc1, pminus, pplus, qexpo, qsqz, rinsum, wi, wincr, xx; LDOUBLE blb, bub, einsum, elsum; int j, jj; qsqz = w * 0.5; /* if w >= 16 then the integral lower bound (occurs for c=20) */ /* is 0.99999999999995 so return a value of 1. */ if (qsqz >= bb) return 1.0; /* find (f(w/2) - 1) ^ cc */ /* (first term in integral of hartley's form). */ pr_w = 2 * pnorm(qsqz, 0.,1., 1,0) - 1.; /* erf(qsqz / M_SQRT2) */ /* if pr_w ^ cc < 2e-22 then set pr_w = 0 */ if (pr_w >= exp(C2 / cc)) pr_w = pow(pr_w, cc); else pr_w = 0.0; /* if w is large then the second component of the */ /* integral is small, so fewer intervals are needed. */ if (w > wlar) wincr = wincr1; else wincr = wincr2; /* find the integral of second term of hartley's form */ /* for the integral of the range for equal-length */ /* intervals using legendre quadrature. limits of */ /* integration are from (w/2, 8). two or three */ /* equal-length intervals are used. */ /* blb and bub are lower and upper limits of integration. */ blb = qsqz; binc = (bb - qsqz) / wincr; bub = blb + binc; einsum = 0.0; /* integrate over each interval */ cc1 = cc - 1.0; for (wi = 1; wi <= wincr; wi++) { elsum = 0.0; a = (double)(0.5 * (bub + blb)); /* legendre quadrature with order = nleg */ b = (double)(0.5 * (bub - blb)); for (jj = 1; jj <= nleg; jj++) { if (ihalf < jj) { j = (nleg - jj) + 1; xx = xleg[j-1]; } else { j = jj; xx = -xleg[j-1]; } c = b * xx; ac = a + c; /* if exp(-qexpo/2) < 9e-14, */ /* then doesn't contribute to integral */ qexpo = ac * ac; if (qexpo > C3) break; pplus = 2 * pnorm(ac, 0., 1., 1,0); pminus= 2 * pnorm(ac, w, 1., 1,0); /* if rinsum ^ (cc-1) < 9e-14, */ /* then doesn't contribute to integral */ rinsum = (pplus * 0.5) - (pminus * 0.5); if (rinsum >= exp(C1 / cc1)) { rinsum = (aleg[j-1] * exp(-(0.5 * qexpo))) * pow(rinsum, cc1); elsum += rinsum; } } elsum *= (((2.0 * b) * cc) * M_1_SQRT_2PI); einsum += elsum; blb = bub; bub += binc; } /* if pr_w ^ rr < 9e-14, then return 0 */ pr_w += (double) einsum; if (pr_w <= exp(C1 / rr)) return 0.; pr_w = pow(pr_w, rr); if (pr_w >= 1.)/* 1 was iMax was eps */ return 1.; return pr_w; } /* wprob() */ double ptukey(double q, double rr, double cc, double df, int lower_tail, int log_p) { /* function ptukey() [was qprob() ]: q = value of studentized range rr = no. of rows or groups cc = no. of columns or treatments df = degrees of freedom of error term ir[0] = error flag = 1 if wprob probability > 1 ir[1] = error flag = 1 if qprob probability > 1 qprob = returned probability integral over [0, q] The program will not terminate if ir[0] or ir[1] are raised. All references in wprob to Abramowitz and Stegun are from the following reference: Abramowitz, Milton and Stegun, Irene A. Handbook of Mathematical Functions. New York: Dover publications, Inc. (1970). All constants taken from this text are given to 25 significant digits. nlegq = order of legendre quadrature ihalfq = int ((nlegq + 1) / 2) eps = max. allowable value of integral eps1 & eps2 = values below which there is no contribution to integral. d.f. <= dhaf: integral is divided into ulen1 length intervals. else d.f. <= dquar: integral is divided into ulen2 length intervals. else d.f. <= deigh: integral is divided into ulen3 length intervals. else d.f. <= dlarg: integral is divided into ulen4 length intervals. d.f. > dlarg: the range is used to calculate integral. M_LN2 = log(2) xlegq = legendre 16-point nodes alegq = legendre 16-point coefficients The coefficients and nodes for the legendre quadrature used in qprob and wprob were calculated using the algorithms found in: Stroud, A. H. and Secrest, D. Gaussian Quadrature Formulas. Englewood Cliffs, New Jersey: Prentice-Hall, Inc, 1966. All values matched the tables (provided in same reference) to 30 significant digits. f(x) = .5 + erf(x / sqrt(2)) / 2 for x > 0 f(x) = erfc( -x / sqrt(2)) / 2 for x < 0 where f(x) is standard normal c. d. f. if degrees of freedom large, approximate integral with range distribution. */ #define nlegq 16 #define ihalfq 8 /* const double eps = 1.0; not used if = 1 */ const static double eps1 = -30.0; const static double eps2 = 1.0e-14; const static double dhaf = 100.0; const static double dquar = 800.0; const static double deigh = 5000.0; const static double dlarg = 25000.0; const static double ulen1 = 1.0; const static double ulen2 = 0.5; const static double ulen3 = 0.25; const static double ulen4 = 0.125; const static double xlegq[ihalfq] = { 0.989400934991649932596154173450, 0.944575023073232576077988415535, 0.865631202387831743880467897712, 0.755404408355003033895101194847, 0.617876244402643748446671764049, 0.458016777657227386342419442984, 0.281603550779258913230460501460, 0.950125098376374401853193354250e-1 }; const static double alegq[ihalfq] = { 0.271524594117540948517805724560e-1, 0.622535239386478928628438369944e-1, 0.951585116824927848099251076022e-1, 0.124628971255533872052476282192, 0.149595988816576732081501730547, 0.169156519395002538189312079030, 0.182603415044923588866763667969, 0.189450610455068496285396723208 }; double ans, f2, f21, f2lf, ff4, otsum, qsqz, rotsum, t1, twa1, ulen, wprb; int i, j, jj; #ifdef IEEE_754 if (ISNAN(q) || ISNAN(rr) || ISNAN(cc) || ISNAN(df)) ML_ERR_return_NAN; #endif if (q <= 0) return R_DT_0; /* df must be > 1 */ /* there must be at least two values */ if (df < 2 || rr < 1 || cc < 2) ML_ERR_return_NAN; if(!R_FINITE(q)) return R_DT_1; if (df > dlarg) return R_DT_val(wprob(q, rr, cc)); /* calculate leading constant */ f2 = df * 0.5; /* lgammafn(u) = log(gamma(u)) */ f2lf = ((f2 * log(df)) - (df * M_LN2)) - lgammafn(f2); f21 = f2 - 1.0; /* integral is divided into unit, half-unit, quarter-unit, or */ /* eighth-unit length intervals depending on the value of the */ /* degrees of freedom. */ ff4 = df * 0.25; if (df <= dhaf) ulen = ulen1; else if (df <= dquar) ulen = ulen2; else if (df <= deigh) ulen = ulen3; else ulen = ulen4; f2lf += log(ulen); /* integrate over each subinterval */ ans = 0.0; for (i = 1; i <= 50; i++) { otsum = 0.0; /* legendre quadrature with order = nlegq */ /* nodes (stored in xlegq) are symmetric around zero. */ twa1 = (2 * i - 1) * ulen; for (jj = 1; jj <= nlegq; jj++) { if (ihalfq < jj) { j = jj - ihalfq - 1; t1 = (f2lf + (f21 * log(twa1 + (xlegq[j] * ulen)))) - (((xlegq[j] * ulen) + twa1) * ff4); } else { j = jj - 1; t1 = (f2lf + (f21 * log(twa1 - (xlegq[j] * ulen)))) + (((xlegq[j] * ulen) - twa1) * ff4); } /* if exp(t1) < 9e-14, then doesn't contribute to integral */ if (t1 >= eps1) { if (ihalfq < jj) { qsqz = q * sqrt(((xlegq[j] * ulen) + twa1) * 0.5); } else { qsqz = q * sqrt(((-(xlegq[j] * ulen)) + twa1) * 0.5); } /* call wprob to find integral of range portion */ wprb = wprob(qsqz, rr, cc); rotsum = (wprb * alegq[j]) * exp(t1); otsum += rotsum; } /* end legendre integral for interval i */ /* L200: */ } /* if integral for interval i < 1e-14, then stop. * However, in order to avoid small area under left tail, * at least 1 / ulen intervals are calculated. */ if (i * ulen >= 1.0 && otsum <= eps2) break; /* end of interval i */ /* L330: */ ans += otsum; } if(otsum > eps2) { /* not converged */ ML_ERROR(ME_PRECISION, "ptukey"); } if (ans > 1.) ans = 1.; return R_DT_val(ans); }