/* * Mathlib : A C Library of Special Functions * Copyright (C) 1998 Ross Ihaka * Copyright (C) 2000-2009 The R Core Team * Copyright (C) 2003-2009 The R Foundation * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, a copy is available at * https://www.R-project.org/Licenses/ * * DESCRIPTION * * The quantile function of the binomial distribution. * * METHOD * * Uses the Cornish-Fisher Expansion to include a skewness * correction to a normal approximation. This gives an * initial value which never seems to be off by more than * 1 or 2. A search is then conducted of values close to * this initial start point. */ #include "nmath.h" #include "dpq.h" static double do_search(double y, double *z, double p, double n, double pr, double incr) { if(*z >= p) { /* search to the left */ #ifdef DEBUG_qbinom REprintf("\tnew z=%7g >= p = %7g --> search to left (y--) ..\n", z,p); #endif for(;;) { double newz; if(y == 0 || (newz = pbinom(y - incr, n, pr, /*l._t.*/TRUE, /*log_p*/FALSE)) < p) return y; y = fmax2(0, y - incr); *z = newz; } } else { /* search to the right */ #ifdef DEBUG_qbinom REprintf("\tnew z=%7g < p = %7g --> search to right (y++) ..\n", z,p); #endif for(;;) { y = fmin2(y + incr, n); if(y == n || (*z = pbinom(y, n, pr, /*l._t.*/TRUE, /*log_p*/FALSE)) >= p) return y; } } } double qbinom(double p, double n, double pr, int lower_tail, int log_p) { double q, mu, sigma, gamma, z, y; #ifdef IEEE_754 if (ISNAN(p) || ISNAN(n) || ISNAN(pr)) return p + n + pr; #endif if(!R_FINITE(n) || !R_FINITE(pr)) ML_ERR_return_NAN; /* if log_p is true, p = -Inf is a legitimate value */ if(!R_FINITE(p) && !log_p) ML_ERR_return_NAN; if(n != floor(n + 0.5)) ML_ERR_return_NAN; if (pr < 0 || pr > 1 || n < 0) ML_ERR_return_NAN; R_Q_P01_boundaries(p, 0, n); if (pr == 0. || n == 0) return 0.; q = 1 - pr; if(q == 0.) return n; /* covers the full range of the distribution */ mu = n * pr; sigma = sqrt(n * pr * q); gamma = (q - pr) / sigma; #ifdef DEBUG_qbinom REprintf("qbinom(p=%7g, n=%g, pr=%7g, l.t.=%d, log=%d): sigm=%g, gam=%g\n", p,n,pr, lower_tail, log_p, sigma, gamma); #endif /* Note : "same" code in qpois.c, qbinom.c, qnbinom.c -- * FIXME: This is far from optimal [cancellation for p ~= 1, etc]: */ if(!lower_tail || log_p) { p = R_DT_qIv(p); /* need check again (cancellation!): */ if (p == 0.) return 0.; if (p == 1.) return n; } /* temporary hack --- FIXME --- */ if (p + 1.01*DBL_EPSILON >= 1.) return n; /* y := approx.value (Cornish-Fisher expansion) : */ z = qnorm(p, 0., 1., /*lower_tail*/TRUE, /*log_p*/FALSE); y = floor(mu + sigma * (z + gamma * (z*z - 1) / 6) + 0.5); if(y > n) /* way off */ y = n; #ifdef DEBUG_qbinom REprintf(" new (p,1-p)=(%7g,%7g), z=qnorm(..)=%7g, y=%5g\n", p, 1-p, z, y); #endif z = pbinom(y, n, pr, /*lower_tail*/TRUE, /*log_p*/FALSE); /* fuzz to ensure left continuity: */ p *= 1 - 64*DBL_EPSILON; if(n < 1e5) return do_search(y, &z, p, n, pr, 1); /* Otherwise be a bit cleverer in the search */ { double incr = floor(n * 0.001), oldincr; do { oldincr = incr; y = do_search(y, &z, p, n, pr, incr); incr = fmax2(1, floor(incr/100)); } while(oldincr > 1 && incr > n*1e-15); return y; } }