/* * Mathlib : A C Library of Special Functions * Copyright (C) 1998 Ross Ihaka * Copyright (C) 2000--2005 The R Core Team * based in part on AS70 (C) 1974 Royal Statistical Society * * This program is free software; you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation; either version 2 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, a copy is available at * https://www.R-project.org/Licenses/ * * SYNOPSIS * * #include * double qtukey(p, rr, cc, df, lower_tail, log_p); * * DESCRIPTION * * Computes the quantiles of the maximum of rr studentized * ranges, each based on cc means and with df degrees of freedom * for the standard error, is less than q. * * The algorithm is based on that of the reference. * * REFERENCE * * Copenhaver, Margaret Diponzio & Holland, Burt S. * Multiple comparisons of simple effects in * the two-way analysis of variance with fixed effects. * Journal of Statistical Computation and Simulation, * Vol.30, pp.1-15, 1988. */ #include "nmath.h" #include "dpq.h" /* qinv() : * this function finds percentage point of the studentized range * which is used as initial estimate for the secant method. * function is adapted from portion of algorithm as 70 * from applied statistics (1974) ,vol. 23, no. 1 * by odeh, r. e. and evans, j. o. * * p = percentage point * c = no. of columns or treatments * v = degrees of freedom * qinv = returned initial estimate * * vmax is cutoff above which degrees of freedom * is treated as infinity. */ static double qinv(double p, double c, double v) { const static double p0 = 0.322232421088; const static double q0 = 0.993484626060e-01; const static double p1 = -1.0; const static double q1 = 0.588581570495; const static double p2 = -0.342242088547; const static double q2 = 0.531103462366; const static double p3 = -0.204231210125; const static double q3 = 0.103537752850; const static double p4 = -0.453642210148e-04; const static double q4 = 0.38560700634e-02; const static double c1 = 0.8832; const static double c2 = 0.2368; const static double c3 = 1.214; const static double c4 = 1.208; const static double c5 = 1.4142; const static double vmax = 120.0; double ps, q, t, yi; ps = 0.5 - 0.5 * p; yi = sqrt (log (1.0 / (ps * ps))); t = yi + (((( yi * p4 + p3) * yi + p2) * yi + p1) * yi + p0) / (((( yi * q4 + q3) * yi + q2) * yi + q1) * yi + q0); if (v < vmax) t += (t * t * t + t) / v / 4.0; q = c1 - c2 * t; if (v < vmax) q += -c3 / v + c4 * t / v; return t * (q * log (c - 1.0) + c5); } /* * Copenhaver, Margaret Diponzio & Holland, Burt S. * Multiple comparisons of simple effects in * the two-way analysis of variance with fixed effects. * Journal of Statistical Computation and Simulation, * Vol.30, pp.1-15, 1988. * * Uses the secant method to find critical values. * * p = confidence level (1 - alpha) * rr = no. of rows or groups * cc = no. of columns or treatments * df = degrees of freedom of error term * * ir(1) = error flag = 1 if wprob probability > 1 * ir(2) = error flag = 1 if ptukey probability > 1 * ir(3) = error flag = 1 if convergence not reached in 50 iterations * = 2 if df < 2 * * qtukey = returned critical value * * If the difference between successive iterates is less than eps, * the search is terminated */ double qtukey(double p, double rr, double cc, double df, int lower_tail, int log_p) { const static double eps = 0.0001; const int maxiter = 50; double ans = 0.0, valx0, valx1, x0, x1, xabs; int iter; #ifdef IEEE_754 if (ISNAN(p) || ISNAN(rr) || ISNAN(cc) || ISNAN(df)) { ML_ERROR(ME_DOMAIN, "qtukey"); return p + rr + cc + df; } #endif /* df must be > 1 ; there must be at least two values */ if (df < 2 || rr < 1 || cc < 2) ML_ERR_return_NAN; R_Q_P01_boundaries(p, 0, ML_POSINF); p = R_DT_qIv(p); /* lower_tail,non-log "p" */ /* Initial value */ x0 = qinv(p, cc, df); /* Find prob(value < x0) */ valx0 = ptukey(x0, rr, cc, df, /*LOWER*/TRUE, /*LOG_P*/FALSE) - p; /* Find the second iterate and prob(value < x1). */ /* If the first iterate has probability value */ /* exceeding p then second iterate is 1 less than */ /* first iterate; otherwise it is 1 greater. */ if (valx0 > 0.0) x1 = fmax2(0.0, x0 - 1.0); else x1 = x0 + 1.0; valx1 = ptukey(x1, rr, cc, df, /*LOWER*/TRUE, /*LOG_P*/FALSE) - p; /* Find new iterate */ for(iter=1 ; iter < maxiter ; iter++) { ans = x1 - ((valx1 * (x1 - x0)) / (valx1 - valx0)); valx0 = valx1; /* New iterate must be >= 0 */ x0 = x1; if (ans < 0.0) { ans = 0.0; valx1 = -p; } /* Find prob(value < new iterate) */ valx1 = ptukey(ans, rr, cc, df, /*LOWER*/TRUE, /*LOG_P*/FALSE) - p; x1 = ans; /* If the difference between two successive */ /* iterates is less than eps, stop */ xabs = fabs(x1 - x0); if (xabs < eps) return ans; } /* The process did not converge in 'maxiter' iterations */ ML_ERROR(ME_NOCONV, "qtukey"); return ans; }