Leelet code exercise
UPDATE AD CASE USING SAME TIME
update TD_XXX
set
djyzmdm=null,
djyzmsj=null,
DLCS= case when DLCS is null then 1 else DLCS+1 end
where djsj='xxx'
2、
update `TD_XXX`
set
`datetime` = 1434567890,
`status` = case `id` when 12 Then 1 when 13 Then 2 when 14 Then 1 end
where `id` in (12,13,14)

Given a table salary, such as the one below, that has m=male and f=female values. Swap all f and m values (i.e., change all f values to m and vice versa) with a single update statement and no intermediate temp table.
update salary
set
 sex = case sex
 when sex = 'm' then 'f'
 else 'm'
end

UPDATE salary
SET sex = IF(sex='f','m','f');

UPDATE salary
 SET sex =
 CASE sex
 when 'f' then 'm'
 when 'm' then 'f'
 else sex -- just in case it contains a new value, we keep it
 END
 ;

Write a SQL query for a report that provides the pairs (actor_id, director_id) where the actor have cooperated with the director at least 3 times.
select ACTOR_ID , DIRECTOR_ID from ActorDirector
group by actor_id, director_id
having count(actor_id) >= 3 and count(director_id) >=3

SELECT project_id FROM (SELECT project_id, DENSE_RANK () OVER (ORDER BY COUNT(employee_id) DESC) r FROM project GROUP BY project_id) t WHERE r = 1;

Write an SQL query that reports all the projects that have the most employees.
The query result format is in the following example:

select project_id from project group by project_id having
count(employee_id)=
(select count(distinct(employee_id)) as cnt from project group by project_id order by
count(distinct(employee_id)) desc limit 1);

Write an SQL query that reports the buyers who have bought S8 but not iPhone. Note that S8 and iPhone are products present in the Product table.
1. 在发现题目问法为"是……而不是…… "时，一般情况下考虑使用NOT IN语句，即利用子查询找出需要排除的选项，然后通过NOT IN语句将主查询中不符合题意的部分排除出去。

select distinct s.buyer_id from Product p
join Sales s
on p.product_id = s.product_id
where p.product_name = 'S8'

and s.buyer_id not in
(select distinct s.buyer_id from Product p
 join Sales s
 on p.product_id = s.product_id
 where p.product_name = 'Iphone')

Write an SQL query that reports the products that were only sold in spring 2019. That is, between 2019-01-01 and 2019-03-31 inclusive.
1. 题意中最重要的一点就是“只在2019年1月1日-2019年3月31日被售出”。也就是，该产品所有的销售记录都在此时间段，此外的时间段无销售记录。
2. 要实现这个目的，对product_id进行GROUP BY，只要要求每个分组中最大的销售时间小于等于"2019-03-31"，最小的销售时间大于等于"2019-01-01"即可。
3. 为了在最后显示出产品的名称，还需要对两表进行内连接JOIN。
4. 为防止出现重复记录，使用DISTINCT去重。

select distinct s.product_id, p.product_name from Product p
join Sales s
on s.product_id = p.product_id
group by s.product_id
#having '2019-01-01' <= s.sale_date
having max(s.sale_date) < '2019-03-31' and min(s.sale_date) >= '2019-01-01'

Write an SQL query that reports the number of posts reported yesterday for each report reason. Assume today is 2019-07-05.

DATEDIFF (datepart , startdate , enddate)

select extra as report_reason,count(distinct post_id) as report_count
from Actions
where action_date = '2019-07-04'
and action = 'report'
group by extra
order by extra
'select activity_date as day, count(distinct user_id) as active_users from Activity
where (activity_date between DATE_SUB("2019-07-27", INTERVAL 29 day) and '2019-07-27')
group by activity_date
order by activity_date'''
SELECT activity_date AS day, COUNT(DISTINCT user_id) AS active_usersFROM activityWHERE activity_date > DATE_SUB('2019/07/27', INTERVAL 30 DAY)GROUP BY activity_date

select cast(cast(count(distinct(session_id)) as decimal(2))/cast(count(distinct(user_id)) as decimal(2)) as decimal(8,2)) as average_sessions_per_user
from Activity
where activity_date between '2019-06-27' and '2019-07-27'

CAST() function converts a value (of any type) into a specified datatype.
SELECT CAST(25.65 AS varchar);

SELECT Round(Coalesce(Count(DISTINCT(session_id)) / Count(DISTINCT user_id),0) , 2)
 average_sessions_per_user
FROM activity
WHERE activity_date > date_sub('2019-07-27', interval 30 day)
Write your MySQL query statement below

select ifnull(round((tab.c / count(d.delivery_id))*100,2),0) as immediate_percentage from delivery d ,
(select count(order_date) as c from delivery
where order_date = customer_pref_delivery_date) as tab

If the preferred delivery date of the customer is the same as the order date then the order is called immediate otherwise it's called scheduled.
Write an SQL query to find the percentage of immediate orders in the table, rounded to 2 decimal places.

We define query quality as:
The average of the ratio between query rating and its position.
We also define poor query percentage as:
The percentage of all queries with rating less than 3.
Write an SQL query to find each query_name, the quality and poor_query_percentage.
Both quality and poor_query_percentage should be rounded to 2 decimal places.

select query_name, round(avg(rating/position),2) as quality,round(((sum(case when rating < 3 then 1 else 0 end))/count(1))*100,2) as poor_query_percentagefrom queriesgroup by query_name

select query_name, round(avg(rating/position), 2) quality , round(avg(rating<3)*100,2) as poor_query_percentage
from Queries
group by query_name

Write an SQL query to find the type of weather in each country for November 2019.
The type of weather is Cold if the average weather_state is less than or equal 15, Hot if the average weather_state is greater than or equal 25 and Warm otherwise.
select t.country_name,
(CASE
 when t.avg_weather <= 15 then 'Cold'
 when t.avg_weather >= 25 then 'Hot'
 else 'Warm'
 end) as weather_type

from
(select c.country_name, avg(w.weather_state) as avg_weather from Countries c
left join Weather w
on c.country_id = w.country_id
 where w.day between '2019-11-01' and '2019-11-30'
 group by country_name
) as t

Write an SQL query to find the team size of each of the employees.

select employee_id, t.team_size from Employee e
left join
(SELECT team_id , count(employee_id) as team_size from Employee
group by team_id) as t

on e.team_id = t.team_id

select e1.employee_id, count(e2.team_id) as team_size from Employee e1
inner join
Employee e2
on e1.team_id = e2.team_id
group by e1.employee_id

select ad_id,
round(coalesce(
 sum(case when action = 'Clicked' then 1 else 0 end)/
sum(case when action in('Viewed', 'Clicked') then 1 else 0 end),0)*100, 2)
as ctr
from Ads
group by ad_id
order by ctr desc, ad_id asc

Write an SQL query to find the ctr of each Ad.
Round ctr to 2 decimal points. Order the result table by ctr in descending order and by ad_id in ascending order in case of a tie.
Write an SQL query to get the names of products with greater than or equal to 100 units ordered in February 2020 and their amount.
Return result table in any order.
The query result format is in the following example:

select p.product_name, sum(o.unit) as unit from Products p
left join
Orders o
on o.product_id = p.product_id
where order_date between '2020-02-01' and '2020-02-29'
group by p.product_name
having sum(o.unit) >= 100

Write an SQL query to find the id and the name of all students who are enrolled in departments that no longer exists.

select s.id, s.name from Students s
left join Departments d
on s.department_id = d.id
where s.department_id not in (select id from Departments)

select id, name from Students where department_id not in(select id from Departments);

SELECT S.id, S.name
FROM Students S
LEFT JOIN Departments D
ON S.department_id=D.id
WHERE D.id is null

Write an SQL query to show the unique ID of each user, If a user doesn't have a unique ID replace just show null.
select u.unique_id, e.name from Employees e
left join EmployeeUNI u
on u.id = e.id

Write an SQL query to find for each date, the number of distinct products sold and their names.
The sold-products names for each date should be sorted lexicographically.
Return the result table ordered by sell_date.
select s.sell_date, count(distinct s.product) as num_sold, group_concat(distinct s.product) as products from Activities s
group by s.sell_date
Group_concat

Write an SQL query to report the distinct titles of the kid-friendly movies streamed in June 2020.
Date could be expressed by two ways:
month(t.program_date) = 06
and (month(program_date), year(program_date)) = (6, 2020)

Return the result table in any order.
The query result format is in the following example.
select distinct c.title as title from
Content c
inner join
TVProgram t
on t.content_id = c.content_id
where month(t.program_date) = 06
and c.Kids_content = 'Y' and c.Content_type = 'Movies'

Write an SQL query to report the customer_id and customer_name of customers who have spent at least $100 in each month of June and July 2020.
Write your MySQL query statement below
select c.customer_id, c.name from
Customers c
join Orders o
on o.customer_id = c.customer_id
join Product p
on p.product_id = o.product_id
group by c.customer_id
having sum(
case
when month(order_date) = 06 then o.quantity*p.price else 0 end) >= 100

and sum(
 case
 when month(order_date) = 07 then o.quantity*p.price else 0 end) >= 100

SELECT
 o.customer_id,
 c.nameFROM Orders o JOIN Customers c ON o.customer_id = c.customer_id
 JOIN Product p ON o.product_id = P.product_idGROUP BY o.customer_idHAVING SUM(CASE WHEN DATE_FORMAT(o.order_date, '%Y-%m')='2020-06' THEN o.quantity*p.price ELSE 0 END) >= 100
 AND SUM(CASE WHEN DATE_FORMAT(o.order_date, '%Y-%m')='2020-07' THEN o.quantity*p.price ELSE 0 END) >= 100;

Write an SQL query to find the users who have valid emails.
A valid e-mail has a prefix name and a domain where:
· The prefix name is a string that may contain letters (upper or lower case), digits, underscore '_', period '.' and/or dash '-'. The prefix name must start with a letter.
· The domain is '@leetcode.com'.
·

select *
from users

where mail REGEXP '^[A-Za-z][A-Za-z0-9\._\-]*@leetcode.com$'

select * from Users
where mail like '[a-zA-Z]%@leetcode.com' and left(mail, len(mail) - 13) not like '%[^0-9a-zA-Z_.-]%'
Date y 2 number of the year, Y all the whole year. M jan, m means 02-03
Trim remove the space
SELECT TRIM('#! ' FROM ' #SQL Tutorial! ') AS TrimmedString; remove the string from ..

select lower(trim(product_name)) as product_name, DATE_FORMAT(SALE_DATE, '%Y-%m') AS sale_date, count(sale_id) as total from Sales
group by 1,2
order by 1, 2

SELECT LOWER(TRIM(product_name)) product_name, DATE_FORMAT(sale_date, "%y-%m") sale_date, count(sale_id) total
FROM sales
GROUP BY 1, 2
ORDER BY 1, 2

select trim(lower(product_name)) as product_name,
left(sale_date,7) as sale_date,
count(*) as total
from Sales
group by trim(lower(product_name)),left(sale_date,7)
order by product_name,sale_date

select trim(lower(product_name)) as product_name,
left(sale_date,7) as sale_date,
count(*) as total
from Sales
group by trim(lower(product_name)),left(sale_date,7)
order by product_name,sale_date

Write an SQL query to find the number of unique orders and the number of unique customers with invoices > $20 for each different month.select
date_format(order_date,'%Y-%m') as month,
count(distinct order_id) as order_count,
count(distinct customer_id) as customer_count
from Orders
where invoice > 20
group by month

select left(order_date, 7) month, count(distinct order_id) order_count, count(distinct customer_id) customer_count
from orders
where invoice > 20
group by 1;

Write an SQL query to report, How much cubic feet of volume does the inventory occupy in each warehouse.
· warehouse_name
· volume

SELECT name warehouse_name,
 SUM(units * Width * Length * Height) volume
FROM Warehouse W
LEFT JOIN Products P
ON W.product_id = P.product_id
GROUP BY name

-- Solution 2
SELECT name warehouse_name, SUM(units * size) volume
FROM Warehouse W
LEFT JOIN
(
 SELECT product_id, Width * Length * Height size
 FROM Products
) ps
ON W.product_id = ps.product_id
GROUP BY name

Write an SQL query to find the IDs of the users who visited without making any transactions and the number of times they made these types of visits.
Return the result table sorted in any order.

select c.customer_id, count(distinct c.visit_id) as count_no_trans from Visits c
left join Transactions t
on c.visit_id = t.visit_id
where transaction_id is null
group by c.customer_id

SELECT customer_id, COUNT(*) as count_no_trans
FROM Visits
WHERE visit_id NOT IN (SELECT DISTINCT visit_id FROM Transactions)
GROUP BY customer_id;

Write an SQL query to report the name and balance of users with a balance higher than 10000. The balance of an account is equal to the sum of the amounts of all transactions involving that account.

select u.name, sum(t.amount) as balance from Users u
left join Transactions t
on u.account = t.account
group by t.account
having balance >10000

Write an SQL query to report the names of all sellers who did not make any sales in 2020.
Return the result table ordered by seller_name in ascending order.
The query result format is in the following example.

select seller_name from Seller
where seller_id not in
(select s.seller_id from Orders o
join Seller s
on s.seller_id = o.seller_id
where year(sale_date) = 2020
group by s.seller_name)
order by seller_name asc
SELECT seller_nameFROM Seller WHERE seller_id NOT IN (
 SELECT DISTINCT seller_id
 FROM Orders
 WHERE LEFT(sale_date, 4) = '2020'
)ORDER BY 1

Cross join same results from a,b,c or cross join b cross join c

select a.student_name as member_A, b.student_name as member_B, c.student_name as member_C from SchoolA a, SchoolB b, SchoolC c
where (a.student_name != b.student_name and a.student_name != c.student_name and b.student_name!=c.student_name)
and (a.student_id!=b.student_id and a.student_id != c.student_id and
 b.student_id != c.student_id)

select contest_id, round((
 count(distinct user_id)
 / (select count(user_id) from Users))*100,2) as percentage from Register
group by contest_id
order by percentage desc, contest_id asc

Write an SQL query to find the percentage of the users registered in each contest rounded to two decimals.
Return the result table ordered by percentage in descending order. In case of a tie, order it by contest_id in ascending order.

There is a factory website that has several machines each running the same number of processes. Write an SQL query to find the average time each machine takes to complete a process.
The time to complete a process is the 'end' timestampminus the 'start' timestamp. The average time is calculated by the total time to complete every process on the machine divided by the number of processes that were run.
The resulting table should have the machine_id along with the average time as processing_time, which should be rounded to 3 decimal places.
select machine_id,
round((sum(case when activity_type = 'end' then timestamp end) - sum(case when activity_type = 'start' then timestamp end)) / count(distinct process_id), 3) as processing_time from Activity
group by machine_id

SELECT machine_id, ROUND((SUM(CASE WHEN activity_type = 'end' THEN timestamp END)-SUM(CASE WHEN activity_type = 'start' THEN timestamp END))/COUNT(DISTINCT process_id), 3) processing_time
FROM Activity
GROUP BY 1

select machine_id,
round(avg(case when activity_type = 'start' then -timestamp else timestamp end)*2, 3) as processing_time
from Activity
group by machine_id

Capitalize the first letger of name
Write an SQL query to fix the names so that only the first character is uppercase and the rest are lowercase.
Return the result table ordered by user_id.

SELECT user_id, concat(upper(substring(name, 1,1)), lower(substring(name,2))) as name
from
Users
order by user_id

select * from Users
where name.formate('A-')
LECT user_id, concat(upper(substring(name,1,1)),lower(substring(name,2,length(name)-1))) as name FROM Users
order by user_id

select user_id
 , concat(upper(substring(name, 1,1)), lower(substring(name,2))) as name
from users
order by 1

Select sum groupby notice: join, left join

rite an SQL query that will, for all products, return each product name with total amount due, paid, canceled, and refunded across all invoices.

select p.name as name, sum(s.rest) as rest, sum(s.paid)as paid, sum(s.canceled) as canceled, sum(s.refunded) as refunded from Product p
join Invoice s
on p.product_id = s.product_id
group by p.product_id
order by p.name

Write an SQL query to find the IDs of the invalid tweets. The tweet is invalid if the number of characters used in the content of the tweet is strictly greater than 15.

Using LENGTH() is incorrect. The question is asking for the number of characters used in the content. LENGTH() returns the length of the string measured in bytes. CHAR_LENGTH() returns the length of the string measured in characters.

select tweet_id
from Tweets
where char_length(content) > 15

Like and regexp
Write an SQL query that will, for each date_id and make_name, return the number of distinct lead_id's and distinct partner_id's.
select date_id, make_name, count(distinct lead_id) as unique_leads, count(distinct partner_id) as unique_partners from DailySales
group by date_id, make_name

SELECT * FROM PatientsWHERE conditions REGEXP '^DIAB1| DIAB1';

Write an SQL query to find all active businesses.
An active business is a business that has more than one event type with occurences greater than the average occurences of that event type among all businesses.
ds

select e.business_id from Events e
join
(select *, avg(occurences) as avge from Events
group by event_type) as t
on e.event_type = t.event_type
where e.occurences > t.avge
group by e.business_id
having count(distinct t.event_type) >1

Write an SQL query to find the id and the name of active users.
Active users are those who logged in to their accounts for 5 or more consecutive days.
Return the result table ordered by the id.

select distinct a.id, (select name from Accounts where id = a.id) as name
from Logins a
join Logins l
on a.id = l.id and datediff(a.login_date, l.login_date) between 1 and 4
group by a.id, a.login_date
having count(distinct l.login_date)=4

SELECT DISTINCT a.id
 , (SELECT name FROM accounts WHERE id=a.id) AS name
FROM logins a, logins b
WHERE a.id = b.id AND DATEDIFF(a.login_date, b.login_date) BETWEEN 1 AND 4
GROUP BY a.id, a.login_date
HAVING COUNT(DISTINCT b.login_date) = 4

Write an SQL query to find the names of all the activities with neither maximum, nor minimum number of participants.
Return the result table in any order. Each activity in table Activities is performed by any person in the table Friends.

SELECT activity from Friends
group by activity
having count(*) > (select count(*) as num from Friends group by activity
 order by num limit 1)

and count(*) < (select count(*) as num from Friends group by activity order by num desc limit 1)

Write an SQL query to find employee_id of all employees that directly or indirectly report their work to the head of the company.

SELECT e1.employee_id
FROM Employees e1
JOIN Employees e2
ON e1.manager_id = e2.employee_id
JOIN Employees e3
ON e2.manager_id = e3.employee_id
WHERE e3.manager_id = 1 AND e1.employee_id != 1

Write an SQL query to report the difference between number of apples and oranges sold each day.
Return the result table ordered by sale_date in format ('YYYY-MM-DD').
[bookmark: _GoBack]

select sale_date, (
sum(case when fruit = 'apples' then sold_num end) - sum(case when fruit = 'oranges' then sold_num end)) as diff
from Sales
group by sale_date

or select sale_date,
(sum(case when fruit = 'aaple' then sold_num else -sold_num)) as diff
from Sales
group by
sale_date

