Formulas

Standardized Bid-Ask Spread = (Ask - Bid) / Ask

Long (Purchasing) Margin Calls: How far can the stock price fall to before a margin call? $\frac{(Shares \times Price - Amt Borrowed)}{(Shares \times Price)} = Maintenance Margin$

Short Margin Calls:

How much can the stock price rise to before a margin call?

Initial margin equity + sale proceeds - (Shares x Price) (Shares x Price) = Maintenance Margin

Fisher's equation:

 $(1+r) = \frac{(1+R)}{(1+i)}$ where r = real rate of return R = nominal rate of return *i* = expected Inflation rate

Real after-tax rate:

$$(1 + r_{AfterTax}) = \frac{1 + R(1 - t)}{(1 + i)}$$

Holding Period Return:

$$HPR = \frac{P_1 - P_0 + D_s}{P_0}$$

HPR = Holding Period Return

 P_0 = Beginning price

 P_1 = Ending price

 D_s = Dividends during the holding period.

Holding period return (HPR) given sub-period returns: $HPR = (1+r_1) \times (1+r_2) \times \cdots \times (1+r_n) - 1$

Arithmetic mean: $\overline{R} = \frac{(R_1 + \dots + R_T)}{T}$

Geometric Mean: $\overline{R}' = \sqrt[n]{(1+r_1) \times (1+r_2) \times ... \times (1+r_n)} -1$

Annualized Holding Period Return:

Annualized HPR = $(1 + HPR)^{\frac{1}{\text{Years}}} - 1$

SharpeRatio = $\frac{(\overline{R-rf})}{SD}$ = Average Excess Return / SD of Excess Return

Expected Portfolio P's Return given two constituents Debt (D) and Equity (E):

$$E(r_p) = w_D E(r_D) + w_E E(r_E)$$

Portfolio's variance given two constituents Debt and Equity:

$$\sigma_P^2 = w_D^2 \sigma_D^2 + w_E^2 \sigma_E^2 + 2w_D w_E Cov(r_D, r_E)$$

Relationship between covariance and correlation:

 $Cov(r_D, r_E) = \rho(r_D, r_E) * \sigma_D * \sigma_E$ $\rho(r_D, r_E) = Correlation coefficient of returns$ $\sigma_D = Standard deviation of returns for Security D$ $\sigma_E = Standard deviation of returns for Security E$ Risk Premium: $R_{rp} = R_{raw} - R_f$

where R_{raw} is investor's required rate of return, R_f is risk free rate and R_{rp} is security's risk premium

CAPM model: $E(R_j) = R_f + \beta_j [E(R_{market}) - R_f]$

Where $E(R_j)$ is security i's required rate of return; $E(R_{market})$ is the expected market return; R_f is the risk free rate; β_j is the beta for stock j.

Implication of CAPM:

Security j's risk premium = β_i * Market Risk Premium

(Security j's required rate of return – risk free rate) = β_j (market expected rate – risk free rate)

Portfolio's Beta:

 $\beta_{Port} = W_1 * \beta_1 + W_2 * \beta_2 + \ldots + W_n * \beta_n$

Preferred Stock Valuation:

$$V_o = \frac{D}{k}$$

Where D is the constant dividend, k is the discount rate (or required rate of return)

Common Stock Valuation:

Current Intrinsic Price =
$$V_o = \frac{D_o(1+g)}{k-g} = \frac{D_1}{k-g}$$

Where g = constant perpetual growth rate = ROE * Retention Ratio D_0 = is the "just paid" dividend at current

 D_1 = is the next dividend in the future k = required rate of return

Growth rate: $g = ROE \times b$

g = growth rate in dividends

ROE = Return on Equity for the firm

=net income/common equity

b = plowback or retention ratio

= (1- dividend payout ratio)

= % of earnings reinvested back to the firm for future growth—retained earnings

Dividend = EPS * PayoutRate where PayoutRate = 1- Plowback ratio

P/E ratio = Current Price / EPS

Where EPS:

Net Income - Dividends on Preferred Stock Average Outstanding Shares

Coupon rate=coupon payment /1000

Current yield = coupon payment/ purchasing price

Holding-Period Return: Single Period:

 $HPR = [(P_1 - P_0) + C] / P_0$

where

C = coupon payments P_1 = price in one period P_0 = purchase price Annualized Holding Period Yield:

Annualized HPY =
$$\left(1 + \frac{\text{change in market Price} + Coupons}{\text{beginning market Price}}\right)^{\frac{1}{\text{Years}}} - 1$$

Accrued Interest =
$$\frac{\text{Annual Coupon}}{2} * \frac{\text{Days since last coupon payment}}{\text{Days between coupon payments}}$$

Macaulay's Duration: $D = \sum_{t=1}^{T} t \times w_t$
where $w_t = \left[CF_t / (1+y)^t \right] / Price$ and $CF_t = CashFlow for periodt$

Duration of a perpetuity bond: (1+y) / y, where y is the yield to maturity or market yield Duration/Price Relationship:

$$\frac{\Delta P}{P} = -D^* \left[\frac{\Delta(1+y)}{1+y} \right]$$

Where y is yield to maturity.

Modified Duration:

$$MD = \frac{D}{1+y}$$

where D is the McCauley's Duration

Modified Duration-Price Relationship:

$$\frac{\Delta P}{P} = -MD^*\Delta y$$

Duration with Convexity-Price Relationship :

$$\frac{\Delta P}{P} = -\frac{D}{1+y} * \Delta y + \frac{1}{2} [Convexity \times (\Delta y)^2]$$

Modified Duration with Convexity-Price Relationship :

$$\frac{\Delta P}{P} = -MD * \Delta y + \frac{1}{2} [Convexity \times (\Delta y)^2]$$

Bond Portfolio Duration:

$$D_P = w_1 D_1 + w_2 D_2 + \ldots + w_n D_n$$

where $w_1 = \text{market value of Bond}_1/\text{market value of the entire bond portfolio, D is Macaulay duration.}$

Bond Portfolio Convexity:

$$C_P = w_1 C_1 + w_2 C_2 + \ldots + w_n C_n$$

where $w_1 = \text{market value of Bond}_1/\text{market value of the entire bond portfolio, } C \text{ is bond convexity.}$

Payoffs and Profits at Expiration – Calls Holder

Current Stock Price = S_T Exercise Price = X

Payoff to Call Holder (Payoff is not the total profit, Payoff is the option value at expiration)

 $(S_T - X) \qquad \text{ if } S_T \! > \! X$

0 if $S_T \leq X$ (let it expire)

Actual profit to Call Holder (after considering cost)

Payoff – Purchase Option Price (premium)

 $(S_T - X - P) \quad if \quad S_T \! > \! X$

0-P if $S_T \leq X$ (let it expire)

Payoffs and Profits at Expiration - Calls Writer

Payoff to Call Writer

 $-(S_T - X)$ if $S_T > X$

0 if $S_T \leq X$ (let it expire)

Actual Profit to Call Writer

Payoff + Premium

- $(S_T - X) + P$ if $S_T > X$

0 + P if $S_T \le X$ (let it expire)

Payoffs and Profits at Expiration – Puts Holder

Payoffs to Put Holder

 $0 \qquad \ \ \, \text{if} \ \ S_T \, \geq \, X \, (\text{let it expire})$

 $(X - S_T) \qquad \quad \text{if} \ S_T \, < \, X$

Actual Profit to Put Holder

Payoff – Premium

0-P if $S_T \ge X$ (let it expire)

 $(X \text{ - } S_T) \text{-} P \text{ if } S_T \, < \, X$

Payoffs and Profits at Expiration – Puts Writer

Payoffs to Put Writer

0 if $S_T \ge X$ (let it expire)

$$-(X - S_T) \qquad \text{if} \quad S_T < X$$

Profits to Put Writer

Payoff + Premium

0+P if
$$S_T \ge X$$
 (let it expire)
-(X - S_T)+P if $S_T < X$

Put Call Parity

$$C + \frac{X}{(1+r_f)^T} = S_0 + P$$